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ABSTRACT
A vexing problem occurs in certain flows when long, but finite,

time-average estimates of the mean flow fail to exhibit the symme-
try properties imposed by boundary conditions and physics. The
mean field becomes suspect, making it difficult, or even incorrect
to apply Reynolds decomposition. The problem occurs when the
flow exhibits “super-coherent” states, i.e. states of flow having co-
herence times much longer than the averaging times used in typi-
cal turbulence experiments. Turbulent Rayleigh-Bénard convection
(RBC) is one such flow, and it will be used here as an example
to illustrate and explain this phenomenon. The study focuses on a
turbulent RBC experiment (Fernandes, 2001) in a 6.3:1 (diameter:
depth) aspect-ratio vertical cylinder that supplemented time averag-
ing with true ensemble averaging to achieve almost zero mean flow.
To obtain a three-dimensional time-varying picture of the mecha-
nisms at work, the experiment is simulated by direct numerical sim-
ulation of the Boussinesq equations (Sakievich et al., 2016). Three
types of super-coherent states, associated with the symmetries of
the flow, are found to bias the mean flow, unless steps are taken to
sample each state with equal probability. They are azimuthal com-
position and orientation of the large-scale structures, the direction
of azimuthal drift, and the preferential direction of the large-scale
central motions.

INTRODUCTION
Reynolds decomposition is fundamental in the analysis of tur-

bulence, and measurement of the mean flow must be accurate to
within a small fraction of the turbulent fluctuation intensity to prop-
erly define the turbulent fluctuating field. The rules for averaging
the results of turbulent flow experiments, physical or numerical, are
quite simple: infinite averages over time are unbiased if the flow is
statistically stationary and ergodic; infinite averages over space are
unbiased if the flow is statistically homogeneous in the averaging
direction(s) and ergodic; and finite averages converge to the infi-
nite averages with small random error if they are performed over
many thousand integral scales (in time or space). Lastly, conver-
gence should be checked by repeated experiments.

These rules suffice in most situations, if the averaging domains
are large enough to achieve converged statistics, but not always. In
certain flows they do not guarantee unbiased results because, even
if convergence is suggested by smoothness of the average, it may be
much slower than expected, leading to physically incorrect results.
Very slow convergence occurs when coherent structures of the flow,
usually those of large scale, persist over times much longer than
scale analysis or the integral time scale would suggest. We call
structures having this property “super-coherent”. Depending on the
procedure for evaluating the integral time scale super-coherence of
the large-scales may be obscured by the small-scale, short-time mo-
tions.

A more insidious problem with time averaging occurs when the

flow locks into ’states’ that do not possess all of the symmetry that
the infinite time average must have. These seem to result from state-
space bifurcations into basins of attraction that trap the dynamics
for very long (or perhaps infinite), times only occasionally (or per-
haps never) allowing natural transitions from one basin to another.
In these cases, averages over long but finite times may sample only
one of the states, or sample one state over a much longer time than
another, creating a bias. It is necessary to either take much longer
time averages, many times not an option, or to stimulate the transi-
tions. The latter can be accomplished by stopping the experiment
and starting a new one, so as to achieve identical, independent ex-
periments, yielding a finite ensemble of equi-probable experiments.
This approach holds true to the definition of an ensemble average,
and so long as each state is realized with equal frequency, it is shown
to improve convergence to the true infinite time average consider-
ably (Fernandes, 2001).

A new method is introduced to reduce bias to one state or an-
other in a finite time numerical experiment. This technique defines
an efficient way to stop and restart the identical simulations so as
to achieve independent realizations whose initial conditions occupy
the various basins of attraction with the correct frequency of oc-
currence. The principles that motivate this technique can also be
extended to experimental studies.

TURBULENT RAYLEIGH-BÉNARD CONVECTION
The ideal canonical form of RBC occurs in a horizontal layer

of constant property fluid bounded by two infinitely wide horizontal
plates, the warm bottom plate being heated uniformly and steadily,
and the cool top plate being cooled in a similar manner to achieve
either constant temperatures or constant mean heat flux. The un-
stable temperature stratification generates buoyancy forces within
the fluid layer which then drive the flow. The Rayleigh number
Ra = βg∆T h3

/αν , (where β is the coefficient of thermal expansion,
g is the gravitational constant, ∆T is the temperature difference be-
tween the two heated plates, h is the plates’ vertical separation, α

is the thermal diffusivity and ν is the kinematic viscosity), is the
primary dimensionless parameter and the Prandtl number Pr = ν/α

is often of secondary importance. A horizontal length scale (L) is
also very important for determining the structure of the flow. The
ratio of these two length scales is the aspect-ratio (Γ = L/h).

Linear instability of this system occurs at Ra = 1708, and it
has the form of parallel, steady, two-dimensional roll-cells. With
increasing Rayleigh number a sequence of more complicated fi-
nite amplitude laminar instabilities and transitions occurs (Busse
& Whitehead, 1971, 1974; Busse, 1978), ending with steady, lami-
nar hexagonal cells at about Ra = 50,000. Above Ra = 105 the flow
becomes chaotic, and around Ra = 106

−107 it is usually considered
to be turbulent. Studies of the turbulent state (Chu & Goldstein,
1973; Garon & Goldstein, 1973; Willis & Deardorff, 1970; Fitzjar-
rald, 1976) were generally performed in square or rectangular test
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sections whose aspect ratios ranging from 1 to 80. Despite hav-
ing fairly wide aspect-ratios, the experiments capable of sensing the
flow velocity found non-zero mean flows, contrary to the zero-value
expected for infinite aspect-ratio. As noted above this puzzling re-
sult made application of Reynolds decomposition problematic. A
similar phenomenon also appeared in unsteady non-penetrative con-
vection, a very close relative of RBC in which the cool upper plate is
replaced by an insulating plate (Adrian et al., 1986). It could be hy-
pothesized that side-walls and insufficient aspect-ratio might favor
flow in one direction more than another. But the careful experiments
of Krishnamurti & Howard (1981) in an annular test section also
possessed mean flows around the annulus, despite the absence of
side-walls, showing conclusively that non-zero mean flow in RBC
derives from mechanics of the flow rather than experimental imper-
fections

EFFECTS OF ASPECT-RATIO
Since the pioneering work of Castaing et al. (1989) on very

high Rayleigh number turbulent convection in unit aspect-ratio
cubes and cylinders that found the Nusselt number proportional to
Ra0.278 rather than the accepted value of Ra1/3 most research has
focused on very high Rayleigh numbers, necessitating low aspect-
ratio test sections (see the review by Ahlers et al. (2009)) .

It is commonly observed that mean flow is prominent in unit
aspect-ratio cubes and cylinders (Zocchi et al., 1990; Bodenschatz
et al., 2000; Ahlers et al., 2009)). Originally called the “wind of
turbulence”, the mean flow is part of a large-scale circulation that
sweeps across the upper and lower plates, figure 1, creating a bound-
ary layer that is of considerable interest regarding heat transfer.

Over the last two decades there has been a strong focus in the
RBC community on understanding the scaling of the Nusselt num-
ber (Nu) with respect to Ra and Pr. As the years have progressed
ever larger Ra have been reached in experimental and numerical
studies with the goals of defining the scaling behavior and reaching
the “ultimate” state for turbulent convection that was first proposed
by Kraichnan (1962). Many different scaling laws for characteriz-
ing the heat transfer scaling in RBC systems have been proposed
(Ahlers et al., 2009) , but the most seminal and enduring work over
the last 20 years is the theory proposed by Grossmann & Lohse
(2000). Grossmann and Lohse’s initial publication for a unifying
theory to predict the scaling of the Reynolds number (Re) and Nus-
selt number (Nu) in turbulent RBC for any given Pr and Ra oc-
curred in 2000 and has been improved by several additional pub-
lications (Grossmann & Lohse, 2001, 2002, 2003, 2004; Stevens
et al., 2013). This theory relies on three main assumptions for the
flow field: statistical stationarity, a single dominant velocity scale
represented by a mean wind, and singular characteristic boundary
layer thicknesses for the respective kinematic and thermal fields.

The majority of numerical and experimental studies have been
performed in unit Γ boxes and cylinders. The “wind of turbulence”
concept is often used to describe the flow structure in these small
Γ domains. The “wind of turbulence” is characterized by a single
roll-cell, or large-scale circulation (LSC), which spans the height
and width of the cell, see figure 1. This roll-cell creates bound-
ary layers along the side walls and thermally active top and bottom
plates which are well described by the Prandtl-Blasius profiles ac-
cording to Grossmann & Lohse (2000). While the theory has proven
remarkably robust in predicting the scaling of Nu, the underlying
assumptions are not guaranteed to hold at larger Γ where the large-
scale structure of the flow departs from the concept of a single LSC.

For example, du Puits et al. (2007) clearly showed that the
“wind of turbulence” breaks down as Γ increases by perform-
ing experiments in air over a wide range of Γ = 1− 11 and Ra =

108
−1011. This has been further corroborated by numerical stud-
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Figure 1. Conceptual diagram of the wind of turbulence in a Γ = 1
cell. The dotted plane illustrates the one of the infinite possibili-
ties for the azimuthal orientation of the LSC. The yellow vectors
indicate the directions for azimuthal drift.

ies of Bailon-Cuba et al. (2010) (Ra = 107
− 109, Γ = 0.5− 11.0)

and Sakievich et al. (2016) (Ra = 108, Γ = 6.3) that reveal com-
plex multi-dimensional patterns for roll-cells in moderate Γ con-
tainers with sidewalls. In a recent conference Stevens et al. (2016)
presented a numerical study that outlined the spatial extent needed
to support fully developed superstructures in a periodic domain at
Ra = 108 and Pr = 1. Stevens et al. (2016) found that Γ ≥ 32 is
required to support the full structure of the flow field, and that mea-
sured Nu departs from the Grossmann-Lohse theory at least in the
region 1 ≤ Γ ≤ 4. These variations from the standard picture of Γ = 1
RBC show that the physics of thermal convection is not fully de-
scribed by the unit Γ case, and that there is a clear value in returning
to large Γ studies that were prevalent several decades ago.

Very slowly evolving coherent motions have been observed
in experimental studies and numerical simulations of wide aspect-
ratio, turbulent Rayleigh-Bénard convection. The time scales
on which they evolve make it extremely difficult to achieve
statistically-converged results during the finite run times of numer-
ical simulations, see an example of computed integral time scales
from our recent direct numerical simulations (Sakievich et al., 2016;
Sakievich, 2017) in figure 4. In this paper, we present a novel pro-
cedure of manipulating the turbulent flow states and performing sta-
tistical averaging in a way that mitigates these problems and yields
the flow statistics that are close to the results of experiments which,
in turn, approach the infinite-time average.

SUPER-COHERENCE AND STATES OF TURBU-
LENT RBC IN AN ASPECT-RATIO 6.3:1 CYLINDER

Fernandes Experiment
At first blush one is tempted to attribute LSCs to low aspect

ratio, but as mentioned earlier, mean flow patterns have been ob-
served in wider aspect-ratios, as well. The experiment by Fernan-
des (2001) employed a 914mm×914mm rectangular convection cell
with an interior cylindrical domain of diameter 760mm and height
120mm defined within a thin, circular acetate wall. The aspect ratio
for the cylinder was 6.3:1. With the intent of making the side-wall
of the cylinder more passive thermally, convection occurred outside
the cylinder as well as inside.

Fernandes utilized very careful averaging procedures to drive
the mean flow toward the expected zero value. Individual PIV snap-
shots were taken with a temporal spacing of at least 4 eddy turnovers
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apart and collected in batches of 15. Fernandes defined an eddy
turnover time as the characteristic time for a particle to cross the
layer depth traveling at Deardorff’s velocity scale t∗ = h/w∗. Dear-
dorff’s velocity scale is defined as w∗ = (βgQoh)1/3 (Deardorff,
1970) where Qo is the kinematic heat flux. After each batch of snap-
shots the collection process was delayed by O(100) eddy turnovers
to allow the large-scale structures to evolve. Further more, between
each 60-70 snapshots the entire heat source was killed, the flow
was allowed to die down for another 100-400 eddy turnovers, upon
which the system was restarted and allowed to settle back to a steady
state (4-12 hours). This procedure reduced the probability that the
large-scale structures would repeatedly lock into a particular basin
of attraction, and the data taken between each of these large breaks
is considered one instance in an ensemble.

Present Simulation
In our recent work we studied the large-scale structures in a

6.3 Γ cylindrical RBC cell via direct numerical simulation (DNS)
(Sakievich et al., 2016). This simulation was setup to mirror the
experiment conducted by Fernandes (2001). The simulation was
performed with a high-order spectral-element method and was nu-
merically well resolved, see Sakievich et al. (2016).

After smoothing out the small-scales with a running time aver-
age we observed that the flow organized itself into a hub and spoke-
like pattern with an updraft in the central region of the cell, and 6
alternating up- and down-drafts near the outer wall, see figure 2.
The hub in this pattern is a central thermal, and the spokes are the
vortex lines that form between drafts of opposing direction along
the outer wall. In fact there is very little change between the plots
in figure 2c and d, indicating that the pattern persists, in form and
orientation, for more than 20t∗. A conceptual illustration of the
observed pattern’s thermal signature is provided in figure 3. Very
similar patterns were seen in the numerical study by Bailon-Cuba
et al. (2010). The large-scale patterns in Sakievich et al. (2016) and
Bailon-Cuba et al. (2010) showed little azimuthal drift and no verti-
cal reversal over at least 600 freefall time units (t f =

√
h/βg∆T ), or

approximately 20t∗ in the numerical simulations. From this we can
infer that the large-scale patterns in turbulent RBC are remarkably
long-lived at large Γ.

SUPER-COHERENT STRUCTURES
A common scale estimate of the integral time scale would

be a few eddy turn-over times, but here the persistence time is
much longer. In such a case we introduce the concept of “super-
coherence” simply to indicate that the flow pattern remains coherent
much longer than the scales of length and time would suggest. The
approximate periodicity of the pattern in figure 2 strongly suggests
using a Fourier description in the azimuthal direction, and this has
been applied fruitfully in Sakievich (2017).

The pattern in figure 2 is clearly not homogeneous in the az-
imuthal direction. But, the circular symmetry of the test section de-
mands homogeneity, and the question is, how can the flow achieve
it? If one imagines the spoke pattern changing its orientation slowly
over time so that it samples all orientations with equal probability,
then the statistics of the flow would become, over long enough time,
homogeneous in the azimuthal direction. Consequently, there is no
inconsistency between the data and the axisymmetry imposed by the
boundary, only a lack of averaging time. A simple way to sample all
orientations, in effect, is to average the flow in the theoretically ho-
mogeneous azimuthal direction, in addition to time averaging. We
conclude that, in general, one should always, if possible, average
in the directions in which the geometry of the flow requires homo-
geneity in the infinite time or ensemble average.

When time averaging does not have enough samples, it is com-
mon to supplement it by averaging over statistically homogeneous
directions in space. In many investigations of RBC it is assumed
that the core region around the center of the cylinder is homoge-
neous in horizontal planes; but this is contradicted by the persis-
tence of large-scale patterns like that in figure 2.

We will refer to the observed pattern illustrated in figure 2 and
3 as state+ because the central column of fluid is an updraft. The
persistence of the central column destroys the statistical homogene-
ity at the center of the cell over the set of realizations in state+.
This stands in direct conflict with the idea that as Γ is increased the
central region of the cell should approach the infinite Γ case which
is statistically homogeneous over horizontal planes. Clearly, addi-
tional states must exist in the infinite ensemble of realizations for
this flow, and these states are not represented in this data set even
though it was sampled over more than 600t f . If the temporal sam-
pling were sufficiently extended to truly approach the infinite-time
average then an event must occur that would drive the flow into
other states. Possible states should, at the very least, include rota-
tions about the central axis (discussed above), and a reorganization
of the large-scales to where the central region of the cell is charac-
terized by a downdraft. We will refer to downdraft organization as
state−.

While states that are a shift in the pattern’s azimuthal orien-
tation can be accounted for by averaging in the homogenous az-
imuthal direction, as would be sufficient in a low Γ case, the down-
draft pattern in large Γ cases requires another state of the flow to be
sampled as can be seen from figure 5. Without this additional state
an average field should be considered a conditional average of the
field given an updraft large-scale organization. The realizations of
the flow in this data set can not be truly statistically independent be-
cause the large-scale structures remain highly correlated throughout
the time scales achievable in the simulations, as seen in figure 4

In this paper, we propose a new technique for constructing en-
semble averages for numerical simulations that has a potential of
sampling over multiple super-coherent states, as is done naturally
in some carefully conducted experiments like Fernandes (2001).
This technique allows us to select initial conditions for the effective
ensemble averaging in a controlled way. With this technique, the
additional states that will be sampled are created to possess certain
properties (for example, a central downdraft versus updraft) that are
missing in the “base” realization. By deliberately constructing and
sampling specifically manufactured conditions that sample the ma-
jor statistically-signifcant states, we ensure that the statistics con-
verge to an unbiased estimate of the infinite-time average using a
relatively small number of realizations. For example, in this paper
we achieve significantly improved statistics with only two realiza-
tions, sampling over state+ and state− as discussed below. This
technique can be used to expand the statistical significance of nu-
merical data sets and extend the number of independent realizations
that can be studied. We will illustrate this technique using our RBC
data set, but it can potentially be applied to other flows where there
are symmetries that allow solutions in multiple states.

The main idea behind our technique is to transform an instan-
taneous realization from the numerical data set into an initial con-
dition for a different “super-coherent” state that possesses a desired
organization in a large-scale structure. For this, we explore sym-
metries in the inhomogeneous directions. In addition, we require
that the transformed data set evolves according to the governing
equations. Our central goal for the manipulation performed in this
paper is to reverse the flow direction in a central column (updraft
versus down-draft) corresponding to state+, identified in figure 2,
and its reflection, state−. We recognize that other symmetries (for
example, based on the direction of the azimuthal rotation) can also
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(a) (b) (c) (d)

Figure 2. Temperature at the mid-plane of the cell plotted with different temporal filtering timescales: instantaneous (a), 1 eddy turnover (b),
10 eddy turnovers (c), 20 eddy turnovers (d).

Figure 3. Schematic of an observed pattern at Γ= 6.3. This pattern
is characterized by large-scale updraft in the center, and six large-
scale drafts of alternating direction along the cell’s side walls. Three
dimensional roll-cells are created by connecting each updraft with
the neighboring downdrafts.
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Figure 4. Integral timescale based on turbulent temperature fluc-
tuations in the 6.3 Γ simulation with separation times expressed in
freefall time units t f (1 eddy turnover = 30t f ).

Figure 5. Temporally and azimuthally averaged temperature and
velocity field in the r-z plane for the 6.3 Γ simulation. Temporal
averaging is over a period of 600t f (20 eddy turnovers).
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Figure 6. Temporal evolution of the volume average kinetic en-
ergy (a), and Nusselt number (b) are shown in the plots above.
state− (- -, blue) was initialized from the transformation of the last
time step of state+ (–, red). (1 eddy turnover= 30t f )

produce other turbulent states.
To reverse the flow direction in the central column, we recast

the field so that the structures falling from the cool top plate ap-
pear as structures rising from the warm bottom plate and vice versa.
Switching states is performed by transforming the vertical velocity
component, vertical coordinate and temperature of a developed tur-
bulent data set at every grid point in the simulation. The formulas
for performing this switch are as follows:

(x+,y+,z+) → (x−,y−,z−) ∶ x− = x+, y− = y+, z− = z t + zb− z+, (1)

w−(x−,y−,z−) = −w+(x+,y+,z+), (2)

θ
−
(x−,y−,z−) = θ t +θb−θ

+
(x+,y+,z+). (3)

All other variables remain unchanged, for example, u−(x−,y−,z−) =
u+(x+,y+,z+) etc. Here, the subscripts t and b refer to the values
at the top and bottom boundaries the superscripts + and − refer to
the flow states, z, θ and w are the vertical coordinate, dimensionless
temperature and vertical velocity, respectively. The transformation
provided by equations (1)-(2) reflects all variables in the flow about
the midplane and preserves the Navier-Stokes equations with the
Boussinesq approximation, continuity equation and thermal energy
equation exactly. The plots in figure 6 show identical signatures in
the volume averaged kinetic energy and Nusselt number as the tran-
sition from state+ to state− takes place. These results verify that

session.paper



−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1
z/
h

<W(z)>A,t/w*
0 0.5 1
0

0.2

0.4

0.6

0.8

1

z/
h

<σW(z)>A,t/w*

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

z/
h

<Ur(z)>A,t/w*
0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

z/
h

<σU
r
(z)>A,t/w*

Figure 7. Ensemble and horizontally averaged mean (left) and
r.m.s. (right) vertical (top) and radial (bottom) velocity profiles nor-
malized by Deardorff’s velocity scale w∗: DNS: Ra = 9.6× 107,
where red (−⋅ ) is state+, blue (- -) is state− and black (–) is the aver-
age of state+ and state−; Experiment: Ra= 6×107 (△), Ra= 2×108

(◻), Ra = 1×109 (◯)

this methodology preserves the continuity in volume average quan-
tities, such as kinetic energy and total heat flux, during the state
transition. Utilizing this technique to transition between converged
states with long term statistical significance has the potential to im-
prove statistical convergence in DNS studies of RBC at a significant
reduction in computational expense.

To illustrate this point we have included a comparison with the
statistical profiles from experiments of Fernandes (2001) and our
previous work (Sakievich et al., 2016) in figure 7. These profiles
have been normalized by Deardorff’s velocity scale.

The profiles generated in figure 7 are taken from within the core
region of the 6.3 Γ RBC cell with a radius of 0.925h. It should be
noted that the experimental mean vertical velocity profiles decrease
in magnitude and the r.m.s vertical velocity profile’s magnitude in-
creases with Ra. Since the buoyant forcing within the cell increases
with Ra, the characteristic instantaneous velocity increases as the
vertical r.m.s profile indicates. We hypothesize that the reason for
the decay of the mean velocity in the experimental profiles is that
the antisymmetric states were more evenly accounted for in Fernan-
des ensemble averages with higher Ra (Fernandes, 2001). When the
original DNS results (state+ only) are compared against the exper-
iment we see that the r.m.s profiles fall within ∼ 11% in a pointwise
comparison and that the mean profiles are dramatically over pre-
dicted. However, when the state+ and state− are averaged together,

the mean velocity profiles are very close to the expected (zero) value
of the infinite-time average and the r.m.s profiles show an excellent
match with the experimental results. This is truly remarkable when
one considers that each group of snapshots in Fernades’ ensemble
average (with the total of 20 groups) was also temporally averaged
over a greater time period than our entire simulation. By our esti-
mates it would take us O(108

) CPU hours to recreate Fernandes ex-
periment on our current grid (and the ability to recreate the desired
uncorrelated large-scale patterns without targeted transformations
as proposed in this work still could not be guaranteed). However,
the results presented in this paper took O(105

) CPU hours to pro-
duce. Perhaps the most exciting observation is that the profiles in
figure 7 clearly show that we were able to obtain a net downdraft in
the central region of the cell over the sampling time of our second
state. This shows that we were able to perform a targeted manipu-
lation of instantaneous data to trigger a new “super-coherent” state
of the large-scale structures.

SUMMARY AND CONCLUSIONS

In summary we have discussed the challenges in obtaining the
flow statistics that would converge to an infinite-time average in
numerical simulations of turbulent flows in situations where super-
coherent states with unusually long correlation times prevail, and
the bias that can be introduced due to insufficient sampling of such
states. Failure to recognize insufficient sampling can lead to vari-
ance in the statistics of stationary processes in such situations. We
used our recent numerical simulation of a 6.3 Γ RBC cell to pro-
vide an example of how this can occur. This simulation extended
over longer times than typical simulation results (Sakievich et al.,
2016), but the form and orientation of the large-scale patterns per-
sisted even longer. We have shown that the effect of orientation can
be ameliorated by averaging in directions that must be statistically
homogeneous in the infinite-average, in this case the azimuthal di-
rection.

Even after azimuthally averaging the data, the central region of
the cylinder showed inhomogeneous nature due to a large-scale up-
draft persisting in the cell’s core. The only way to resolve this issue
is to average these results with another state of the flow field with
a downdraft in the center. We then presented a methodology for
triggering this state using the inherent symmetries in the inhomo-
geneous vertical direction that didn’t alter the net kinetic or thermal
energy in the fully developed turbulent field. The application of this
methodology showed that a net downdraft was indeed created in the
region of interest and that this downdraft remained dominant over
at least the same temporal averaging period that was used to collect
the first flow state. This method has the potential for application to
other flows that have multiple, long-lived states and an exploitable
symmetry.
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