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Abstract 

 
 One of the modification of Large Eddy 
Simulation method is developed. It is applied to the 
problem of mixing of two supersonic flows. Kelvin-
Helmholtz instability is obtained. Instantaneous data 
are averaged and the shear layer thickness is 
calculated. It is compared with the experimental one. 
The conclusion about the sensitivity of the method to 
the change in model constants is made. 
 

Introduction 
 
 CFD group, in which an author works on the 
diploma, deals with viscous and turbulent flows. 
Numerical method in use is based on time-averaging of 
Navier-Stokes equation system. This method was 
tested thoroughly, one of test problems was considered 
by the author. (1) Some good results are obtained with 
this method. But we are looking for the further 
improvements.  
 Now there are three ways of numerical 
calculation of complex turbulent flows. The first 
approach is the use of semiempirical turbulence models 
for the closure of time-averaged Navier-Stokes 
equation system. Its advantage consists in the 
possibility of using relatively large grid cells and 
therefore the time of calculation is acceptable. But 
there is an obvious drawback of this method. However, 
it is well-known that all methods based on 
semiempirical turbulence models have one essential 
and unavoidable defect: they use the averaging over all 
range of turbulent motions. But among these motions 
there are scales that are determined by concrete flow 
geometry and therefore principally cannot be described 
in universal way.  
 The second way – Direct numerical 
Simulation (DNS)- could solve the problem of 
universality. It doesn’t use any averaging and therefore 
- any empirical constants. But in high Reynolds 
number flows the largest scales (eddies) can be 103 
times as big as the smallest ones. It requires an 
enormous number of mesh points to reproduce directly 
all scales appeared and it takes a lot of processor time. 
So, a significant disadvantage of this method is the 
limitations to relatively law Reynolds numbers and 
simple geometry.  
 The third way – Large Eddy Simulation – 
seems to be very attractive. Its idea is to simulate the 
large scales only, accepting that the influence of the 

small ones is taken into account through subgrid scale 
(SGS) model. It is the large eddies which determine the 
characteristics of the individual flow, vary from one 
flow to another and are hard to be modeled in any 
universal way. In contrast, the smallest eddies are fairly 
universal and isotropic provided that they are in the 
equilibrium range. Models for them are expected to be 
more universal in comparison with those for time 
average method.  
 It was proposed to the author to develop a 
numerical method based on LES: our CFD group is 
going to use this perspective approach in various 
problems.  

In this work the application of this method to 
the problem of mixing of two supersonic flows is 
presented. Various configurations of computational 
grid are examined in order to find the dependence of 
the solution on the grid. Some constants included in the 
subgrid scale model are varied and the conclusion is 
made about the sensitivity of the model to their 
variaton. Kelvin-Helmholtz instability characteristic for 
the tangential discontinuities is obtained in 
computation. Averaged pattern of the flow is also 
obtained. Shear layer growth rate is calculated using 
averaged data and compared with the experimental 
one.  

1. Description of LES method 
 

1.1. The separation process and basic equations. 
The mathematical separation of eddies into large and 
small ones is accomplished through the filtering 
procedure 

( ) ( ) ( )f x G x x f x d xr r r r r
= ′ ′∫ ,  

( )G x xr r, ′ -filter function with the characteristic width 
Δ. 

Various filters are possible: Gaussian filter, 
filter of finite Fourier method, box filter. The latter is 
used at the present work. It has the form 
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It corresponds to the averaging through the cell’s 
volume (here V is the cell’s volume). 

This averaging procedure is applied to the 
Navier-Stokes equation system: Favre approach to 
averaging is used for all parameters except P and ρ : 
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Well-known expressions for the full gas energy, 
internal gas energy per unit mass, components of the 
tensor of viscous stresses, heat fluxes, Satherland 
formula for molecular and viscous coefficients and 
state equation of the gas are used for the closure of the 
system (1). Subgrid turbulence is taken into account 
through the following SGS model. 
 
1.2. Subgrid modeling. The simplest subgrid model 
due to Smagorinsky-Lilly is used in this method. It is 
based on the gradient transport hypothesis. (2-4)

     ρ δ μ( ~ ~ ) ~ ~R R S dik kk ik T ik ik− = −
⎡
⎣⎢

⎤
⎦⎥

1
3

2
1
3

δ ,  

 where 

 

~ ~ ~

~ ~ ~

S
u
x

u
x

d S div u

ik

i

k

k

i

ii

= +
⎛
⎝
⎜

⎞
⎠
⎟

= =

1
2

∂
∂

∂
∂ . 

~ ~

R u uik i k= ′′ ′′ - subgrid stresses. 
Smagorinsky had also proposed: 

μ ρ μT C S= ⋅ Δ2 ~
, where

~ ~ ~S S Si j ij= 2 , 

Δ is the characteristic filter width or the mesh 
spacing. It could be either equal to 

 , (4)  ( )Δ = h h hx y z

1 3/

 or , (5)  (Δ = + +h h hx y z
2 2 2

1 2/)
 or ( )Δ = min , ,h h hx y z  (6)  

depending on the structure of the problem. Lilly 
justified the model in terms of turbulence theory and 

evaluated the constant C  as 0.0162. μ
(2) But in general 

authors vary it from ≈0.005 up to ≈0.025. (2-4)

 
1.3 Modeling the kinetic energy of the subgrid 
turbulence. Kinetic energy is directly related to the 
trace of the tensor of subgrid stresses  
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so it is included in the formula for them: 
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Certainly, we can add the term 
1
3
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pressure, i.e. replace p Rkk+ →
1
3

~ p  and don’t 

distinguish “molecular” pressure from the 
“turbulent”.(4-5) But we can also model the value of 
~k on the base of the following considerations.  

Subgrid stresses are proportional to 
~k : 
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Small eddies are expected to be in the range of 
universal equilibrium (it is the condition of the success 
of LES). Then the total dissipation rate of turbulent 
energy ρ ε~  is equal to the rate of energy transfer 
trough the cascade of eddies C from resolved to 
unresolved scales (that is, the rate of production of 
SGS turbulent energy).  
The energy cascade is  
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Substituting (8) and (9) we have 
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Value of the constant  given in literature is 
45,8. 

ck
(6)

 The knowledge of the value of 
~k  enables us 

to simulate its diffusive and turbulent fluxes: 
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2. Numerical method 
 

Our numerical method and explicit and has 
the 2nd order of accuracy. (11,12) Approximation of basic 
equations is accomplished using finite-volume 
computational method. (7) The general form of the 
numerical scheme is: 
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Godunov-Kolgan-Rodionov scheme (7-10) is chosen 
for the approximation of convective fluxes (2). It is the 
explicit monotone second order scheme. Exact solution 
of the Riemann problem about the decay of an arbitrary 
discontinuity is used for the calculation of parameters 
on the cell’s borders by iterative method. This scheme 
is proved to be an optimal for the calculation of 
inviscid laminar flows. The modification of central-
difference approximation of derivatives is used for the 
calculation of diffusive and turbulent fluxes (3). 
Predictor-corrector method is used to get the second 
order of approximation in time.  

3. Testing of the method 

3.1. Formulation of the test problem.  The method 
described above was applied to the problem of mixing 
of two supersonic air streams with the following 
parameters:  
 

 Upper stream Lower stream 
M 2 1.4 

T, K 163 214 
P, kPa 50 50 

 

 
FIG.1. Flat supersonic mixing layer 

 
Tangential discontinuity is known to be 

unstable with the so-called Kelvin-Helmholtz 
instability arising. This instability results in the 
transition to turbulence and formation of the turbulent 
shear layer. Such layer is self-similar with the growth 
rate db/dx being constant and independent on x. 

A lot of experiments were carried out for 
various shear layers and the generalization of 
experimental data gives the following formula: 
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This value for our flows is 
. d b d x/ ~ .0 018

 
3.2. Structure of the computational grid. Both flows 
are supposed to have an initial velocity directed along 
the x –axis. y-axis is perpendicular to the surface of 
discontinuity. Planar shear layer is modeled, but the 
program used for the calculations is three-dimensional, 
so one cell is given in z-direction with the size 

( )h hz x= min ,hy  

Characteristic filter width is chosen as (6). 
With any other formula for Δ (4,5) the largest aspect of 
the cell will define turbulent viscosity for non-square 
grid basically. It will result in smoothing small 
disturbances (they are proportional to y-size of the cell) 
by this large value of turbulent viscosity. 

The primary configuration of the 
computational grid was the following: 

 

 
 

FIG.2. Configuration of the grid 
 

The length of the computational domain in x-
direction is 1 m; (so the length of each cell is 0.00167 
m). Fine grid in y –direction (Nmin=8 with H0=0.0008 
m) is made in order to describe more precisely the 
origin of the turbulence – rectangle CDIJ at the Fig.2. 
Out from this layer with fine cells the grid becomes 
coarser by the power-law (N1=16 on rectangles DEHI 
and BCJK). Large-scale turbulence must not 
theoretically go out beyond the thickness of the shear 
layer but we have wanted to secure ourselves from 
such deviations. That’s why we have made the total 
height of the computational domain equal 

( )KH L db dx theory≈ ⋅2 / , where  is 

given by the formula (10). 

( )db dx theory/

 
3.1. Formulation of boundary conditions. Two 
eddies with random fluctuations of the velocity, 
density and pressure are considered to be initial 
disturbances to cause the turbulence. They are given at 
each time step at the left boundary near the surface of 
the discontinuity, i.e. in the layer with fine grid. In our 
early computations we have used the random 

⋅

  



 

disturbances along the whole left boundary regarding 
their correlation in space, so that there was an eddy in 
each grid cell. It was rather difficult procedure. But it 
turned out to be unnecessary and two eddies are 
sufficient for initializing the turbulent mixing. 
 For each large-scale parameter of such eddy 

we can write 
~ ~ ~f f f= + ′ . 

~f  is the mean large-scale 
value of the parameter in time. We accept it equal to 
appropriate value of the undisturbed coming flow. Its 
pulsation ′

~f  is taken to have a Gaussian distribution 
in time and modeled with the help of random number 
generator. The question is to find the value of the 
mean-square fluctuation for each parameter.  
 The dispersion of each component of the 
velocity can be calculated from the following 
considerations. Turbulent Mach number is 
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 is usually considered as 0.1÷0.5, a is the 
speed of sound. We take  equal to 0.3 for both 
flows. It leads to the following value of the mean-

square fluctuation for the velocity components: 

M T

M T

D = 

44.76 m/s for the upper stream and D = 51.16 m/s 
for the lower stream; mean longitudinal velocities are 
517 m/s and 414 m/s, respectively. So, the disturbances 
of the parameters are approximately 10% from their 
mean values.  
 If we know the value of the velocity pulsation 
we can also find the value of those for pressure and 
density from the following considerations. 
 Let us consider the pulsation of the full gas 
energy (sings of averaging are omitted). 
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 Analogous expressions can be written for 

and . Pulsation for density is calculated 

then as 
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 Boundary condition at the exit is the linear 
extrapolation of parameters. It is correct, as both flows 
are supersonic. Mirror reflection of parameters is 
accomplished at the upper and lower surfaces of the 

domain. Parameters of undisturbed coming flow are 
taken to be an initial field. Global time step is used in 
the calculations since the development of the large-
scale turbulence is essentially non-stationary process. 
Constant  is taken to be 0.02. Cμ

 
3.4. Computation results. Such rather strong 
disturbances of the discontinuity surface must result in 
Kelvin-Helmholtz instability. Indeed, after 3-4 
thousands time steps the surface begins to oscillate; 
fully developed structure of mixing can be observed 
after 15 thousands steps (see Fig.3).  

 

FIG. 3. Instantaneous field of Mach number. 
 

It can be seen that mirror condition slightly 
distorts the picture. Buffer subregions were added 
above and below the computational domain to avoid 
the reflection of eddies from the boundary. External 
boundaries of these subregions constitute Mach lines 
coming from upper and lower points of the left 
boundary, respectively. With such buffer subregions 
the solution doesn’t suffer from the drawback cited 
above (see Fig.4) 

. 

 
 

FIG. 4. Calculation with buffer subregions. 
 
Some variants of grid modification were 

investigated in order to find the sensitivity of our 
computation to the structure of grid: 
1. Grid is enlarged in x-direction (the length of grid 

cells is increased by 10 times). Smoothing of 
eddies occurs (see Fig.5 a,b).  

 

 a) 
 

  



 

 b) 
FIG. 5. Damping of Kelvin-Helmholtz instability in 
the case of coarse grid in x direction 
a) The whole computational region; 
b) Fragment: the beginning of smoothing. 
 
2. Grid is enlarged in y-direction (12 cells instead 

32). The height of non-buffer subregions is 
diminished by 2 times. We can see only 
oscillations of discontinuity surface, any eddy 
structure isn’t observed. Moreover, the shear layer 
goes out from the region of fine grid into coarser 
buffer subregions (Fig.6). 

 

 
 

FIG. 6. The height of the region with fine grid is 
. ( )KH L db dx theory≈ ⋅ /

It justifies our decision to make the region of fine grid 
larger then the theoretical value for shear layer 
thickness. 
3. The best grid for the computation of this task by 

time-averaging method is the self-similar one. (12) 
But for LES method such grid proved to be 

inadequate. It describes the flow very badly 
(Fig.7).  

 
FIG. 7. Grid is self-similar from the beginning 

of mixing. 
It is explained by the fact that the turbulent viscosity is 
proportional to the size of the cell and increases with 

the increase in it. Turbulent structures are still week at 
the beginning of mixing and increasing turbulent 
viscosity suppresses them, doesn’t give them to 
develop. So, the origin of the turbulence seems to be 
better described with the uniform grid (even if one 
direction). But once the turbulence has been developed, 
self-similar grid can be used for the computation rather 
successfully.  
4). Fig.8 (a,b) confirms this statement. Here another 
domain with the same length (1 m) is appointed to the 
developed shear layer pattern. The added part has the 
self-similar grid in the region of intensive mixing, 4 
finest cells in both streams are uniform as before.  

   a) 

  b) 
FIG. 8. Grid is self-similar beginning from the point 
x=1 m  a) General view; 
  b) Fragment near the point x=1 m 
 
 The averaged picture of the flow is also 
obtained in addition to the instantaneous one (see 
Fig.9). All parameters of the flow are averaged over 
the interval of 10 thousands time steps. Such length of 
the interval is more than sufficient to obtain averaged 
data not including random fluctuations of parameters. 
 

 
 

FIG. 9.  Time-averaged field of Mach number 
 
 Thickness of the shear layer is calculated on 
the basis of averaged data. Its value for the doubled 

  



 

domain is shown at Fig.10. Graphics present results for 
the first, third and fifth averaging respectively. After 
the first 10 thousands time steps there is a part of the 
flow that is still not involved in mixing at all. For the 
third interval of averaging the distant cells still 
experience only small fluctuations and contribute to the 
averaged thickness less then they must. At the fifth 10 
thousands time steps the flow is fully developed, so 
further calculation hardly can give some new results. 
Thickness of the shear layer corresponding to the 
theoretical formula (9) is also shown at this figure. We 
must notice that our computed layer approximately 1,5 
times exceeds the experimental one.  
 

 
FIG.10. Distributions of mixing layer thickness 

 
 If one describe time-averaged flow with shear 
layer by semiempirical model of turbulence, than 
turbulent viscosity is proportional to the growth rate of 
the shear. That’s why we have tried to decrease the 
constant  by 1,5 times hoping the thickness of the 

shear layer to be diminished too. But this value remains 
the same as in the previous calculation (see Fig.11, 
where results for the first and the third averaging are 
shown). Considerable change in c  - from 45,8 to 1 - 
also doesn’t influence the results. To all appearance, 
the method in use is insensitive to the value of 
constants inserting in SGS model. 

Cμ

k

 

 
FIG.11. Computations for various values of C  μ

 

 This conclusion is not extraordinary. It is 
known that in LES a change in SGS model has the 
relatively small effect on the statistical properties of the 
large-scale flow. This feature is termed as “model-
independence” of LES. (4) Leslie (2) believes one of the 
essential drawbacks of the LES is that one cannot 
improve the results of an unsatisfactory simulation by 
adjusting constants. It is due to the fact that LES is 
attempting to reproduce the flow rather then to model 
it: there is therefore almost nothing to adjust.  
 I think this simulation shouldn’t be named as 
very unsatisfactory. Certainly, there is a great field for 
further improvements, but these improvements can be 
done. Although Smagorinsky model isn’t the best, 
potential of this calculation doesn’t lie in improvement 
SGS model due to the relative insensitivity of LES to 
SGS models. There are two possibilities for getting 
more plausible results. 
1. Transition to three-dimensional computation. It is 

necessary because the properties of turbulence in 
2D and 3D flows are essentially different. (13) 

2. Using more detailed grid. Indeed, for the 
simulation to have some chance of success, it is 
necessary for subgrid scales (unresolved 
wavenumbers) to be entirely in the equilibrium 
range where the structure of the small scale 
turbulence depends only on local conditions. Once 
it is satisfied further diminishing in sizes of cells 
shouldn’t influence the solution. It is not so in our 
case. We observe strong dependence of the 
solution on the grid. Consequently, we don’t 
ensure yet that our small-scale structures belong to 
the equilibrium range.  

 Indeed, true inertial subrange will appear for 
wavenumbers k>102, where k = 2 lπ / , l is the 
character length of motions. k of the order of unity 
characterizes the largest eddies, i.e. those with sizes of 
about the thickness of the shear layer. It implies we 
must have minimum 100 cells across the shear layer 
with the size ∼10-4 m and they are to be square. But we 
have only 20.  
 It was observed that turbulent structures 
develop only in the region of finest grid (8 cells near 
the discontinuity surface). When they goes beyond this 
region they begins to spread with a flow only growing 
in size, without any developing. The finest grid 
actually has necessary size (2⋅10-4 m), while the rest of 
the grid being much more largely. This observation 
also confirms the conclusion about the inadequacy of 
such coarse grid. 
 But while recognizing the need for these 
measures (using more detailed grid and transition to 3D 
computation) we don’t have an opportunity to realize 
them in the nearest future. Our limitation is power of 
available computers. These calculations were 
performed at Alpha XL 266 workstation (DEC). They 
occupy approximately 50 Mb of virtual memory for the 
computational domain of the length 1 m with buffer 
subreigons, each time step takes 30 sec. So it takes 
about 5 days to obtain the developed picture of the 
flow even for such coarse mesh. 

  



 

 The smaller cell size, the stronger time step 
limitation, so refinement of the grid by 5 times will 
increase the time of calculation to month or more. 
Transition to 3D simulation even for the old grid will 
require approximately 2,5 months of calculation. These 
numbers seem to be unrealistic, as not one computation 
is required to obtain really good results (we should try 
various configurations of grid, various constants in the 
model, various models etc.) So, it’s hardly possible to 
perform computations by LES method on modern 
Personal Computer. 
 

Conclusions 

1.  The modification of Large Eddy Simulation method 
is developed for the calculation of flows with 
viscosity and turbulence. This method allows 
obtaining Kelvin-Helmholtz instability 
characteristic for tangential discontinuities.  

2.  In calculations the qualitatively correct picture of 
both non-stationary and time-averaged flows is 
obtained. However, growth rate of mixing layer is 
1.5 times overestimated in calculation in 
comparison with the experimental data. 

3.  The solution of this problem reveals strong 
dependence on grid. On the contrary, constants 
including in subgrid scale model doesn’t influence 
it. The improvement of the quality of calculations, 
therefore, lies in the transition to more detailed grid 
and 3D simulations. It’s worthless to change 
constants in SGS model and the model itself. 

4.  Expense in computer memory and time are too 
large even for relatively coarse grid if calculate this 
problem on PC. Therefore, it seems unreasonable 
yet to use PC for computations by LES method. 
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