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Abstract 

 Numerical schemes with various approximations of 
the second derivative in diffusive fluxes are investigated 
with the aim of finding an optimal one. Calculation results 
for two model equations are compared with their analytical 
solutions. Conclusions are made about an optimal scheme on 
the basis of this comparison.  

 

Introduction 

Work, described in this paper, was accomplished on 
the first stage of the diploma practice. CFD group, where an 
author has a practical work during the education in MIPhT, 
comparatively lately has proceeded to consideration of 
problems with viscosity and turbulence. For this purpose a 
new numerical method is developed, some good results are 
already obtained. But before computation of complex 3D 
flows we need to test thoroughly the method in use. So our 
group is now engaged in calculation of various test 
problems, one of which has been proposed to the author. 

For calculation of inviscid laminar flows many 
numerical schemes are developed, they are rather well 
investigated and optimal class of schemes is founded 
(Godunov-type schemes using TVD-principle [1-5]). 
Advantage of these schemes is that they take into account the 
physical features of the phenomenon. Godunov-type 
schemes use an exact solution of the Riemann problem about 
decay of an arbitrary discontinuity. TVD-principle is 
connected  with the 2nd law of thermodynamics. 

In case of the Navier-Stokes equations the viscous 
terms, proportional to the second derivatives of gas 
parameters, are added to the convective those. The known 
approximations of these derivatives don't take into account 
the physical features of the phenomenon. Moreover, for 
Navier-Stokes equations there is no task with exact solution 
that could  be used for the construction of numerical scheme. 

Usual practice is to use for the viscous terms 
approximation the simplest scheme - central-difference one 
This scheme has a number of positive features: it has small 
stencil, consisting of three points; this stencil is symmetric, 
that correctly reflects the symmetry of disturbances 
propagation due to diffusion; this scheme provides  the 
second order accuracy in the approximation of the space 
derivatives (for the uniform grid). But this scheme isn't 
proved to be the best. 

In this work an attempt to find  an optimal scheme 
for approximation of derivatives in diffusive fluxes is 
presented. 

Approach to this problem is based on using simple 
model equations having analytical solutions. These equations 
keep the main properties of Navier-Stokes system. Several 
test problems for these equations are solved numerically. 
Numerical solution is compared with the exact one. 

For viscous terms modeling an approximation 
depending upon the single parameter is considered. The 
parameter is varied and function characterizing errors is 
calculated for test problems. On the basis of this function the 
conclusions are made about the quality of the scheme with 
the given parameter value. 

 

1. Viscous Burgers equation and numerical 
method for its solution 

Model equations used in the present paper can be 
derived from the Navier-Stokes equations upon the 
circumstance of some simplifying assumptions: 

1) Incompressible medium is considered ( ρ = const ); 

2) Flow is one-dimensional; 

3) Dependence ( )ν T  is disregarded, that allows to 
exclude from consideration the energy equation. 

4) The longitudinal pressure gradient is absent 
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Then the momentum equation is written as follows:  
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 It is the so-called Burgers equation , which is a 
sufficiently good model, as it has all peculiarities, inherent to 
the system of Navier-Stokes equations.  

 At the absence of convective terms Burgers 
equation reduces to usual diffusion equation: 
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Numerical method 



Numerical scheme for the solution of the equations 
in consideration is obtained by integral method. Then the 
general form of scheme is:  
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where the concrete way of the approximation of fluxes 
 and  defines the concrete scheme. For the 

scheme to have a second approximation order in space the 
function u is considered to be linear within each cell. It is 
represented as follows: 
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method [2] is used.  
 Predictor-corrector procedure is used for providing 
the second order of approximation in time. 

 For calculation of convective fluxes 
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solved exactly on each cell boundary 

 Described numerical scheme is an explicit 
monotone scheme of the second approximation order in 
space and time. It is well-known Godunov-Kolgan-Rodionov 
scheme[1-4]. 

 Various approximations of the second derivative 

may be proposed for the simulation of viscous terms ν ∂
∂

2
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in equations (1),(2). Due to the symmetry of disturbances 
propagation by diffusion the stencil must be symmetric. In 
addition, diffusion equation (2) is linear. This fact allows to 
hope that optimal approximation may belong to the class of 
linear approximations. Therefore, let’s consider a general 
form of the second derivative linear approximation for the 
uniform grid using the five-point stencil: 
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For the second order of accuracy it is necessary: 
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This results in the following formula :  
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2.  Principles of schemes’ comparison

 Linear schemes for the diffusion equation were 
investigated by von Neumann spectral method [6], which 
will be considered below. Using this method the condition of 
scheme stability a  and time step limitation is 

obtained:
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In connection with these conditions, only schemes 
with parameter [ ]a1 0 3∈ ,  are compared, since for  
time step limitation becomes too strict and there is no sense 
to use such schemes. 

a 1 3>

 In addition, the main purpose of this work is the 
choice of an optimal scheme for solving stationary problems. 
In this class of problems local time stepping is usually 
accepted. In this method  time advance realizes in each cell 
with the maximum possible time step permitted by the 
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being very convenient and quick procedure  the calculation 
with the local time step has nothing in common with the 
realistic flow evolution, which sometimes lead to the 
breakdown of solution. To avoid this it is necessary to 
multiple τ  max  by some stability coefficient 
K <1, depending on the properties of calculated flow but not 
on the scheme parameter . That’s why schemes with the 
same K  are compared,  
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τ τ= ⋅max K K, ≤ 1 .  Parameter a  
is varied from 0  to 3  with the step 0.05.   Calculations are 
performed for  three stability coefficients  K = 1, 0.5 and 0.1. 
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(  -  numerical  u  - exact solution of the given problem) 
is computed. On the basis of  this function the scheme 
comparison is fulfilled. 
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 Results of scheme comparison on the basis of error 
function for all test tasks are represented at Fig.2-6. Value of 
the error function F  is plotted along the vertical axis, value 
of the parameter a  is plotted along the  horizontal axis. 
Curves are plotted for all three values of K. 
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3.  Test calculations for the diffusion equation

Let's consider two Cauchy problems for the 
diffusion equation (2). 



1) The first test task: an action of diffusion on δ  - 
function. In this case in the initial time moment 

u x x x( , ) ( )0 0= −δ .  

 The solution of this task is the Gauss function [6]: 

u x t
t t

x x
t t

( , )
( )

exp{
( )

( )
}=

−
−

−
−

1
4 40

0
2

0π ν ν
   

Calculations show that when  scheme is 
nonmonotone ( see the velocity profile u(x) at Fig. 1) 
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Fig.1   The first test task for the diffusion equation. 

Velocity profile for. <1 a 1

 Function of errors  for this computation is 

represented at Fig.2,a. When K = 1 an optimal value of a  is 
.  As , an optimum displaces toward 

. The thing is that the scheme with a  has 
the third approximation order in space. Using finite time 
steps ( ) we obtain the scheme with mixed 
approximation order (the third in space and the second in 
time). But as tends to zero the role of time terms 
becomes less sufficient and order of x  approximation begins 
to play the cardinal role. This explains the good quality of 
this scheme for small time steps.  
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 It is interesting that with the diminishing of K for 
, the errors diminish too, if a , and rise, 

if a . This fact can be explained as follows. From the 
formula  (3)  it can be seen that when a  only closest 
cells j-1, j and j+1 play the principal role in the 
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steps when disturbance from more distant cells doesn’t have 
sufficient time to rich the cell j and make a contribution in 
averaged flux (during the time τ  viscous disturbances 

propagate at the distance Δ ~ ν τ ). So, the schemes with 
a 1 1≈  reveal the better quality when K is small. With the 
increase in a  the role of more distant cells j-2 and j+2 in 
the second derivative approximation increases and the better 
scheme quality is achieved for the larger value of K.  
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 Calculations of the same task for two times less 
finishing time were also implemented, results are represented 
in Fig.1,b. It can be seen that the qualitative character of the 
curves including the positions of the error function minimum 
is the same as in the first case (compare Fig.2,a and Fig.2,b). 
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Fig. 2. The first test task for the diffusion 
equation. Plots of the error function: 

a) computation up to the time ; T0

b)  computation up to the time T  0 2/
2) The second test task is determined by the following 

initial conditions: 
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 This task is considered with the aim of tracing the 
evolution of concrete set of harmonics with known wave 



numbers. An exact solution of this problem is: 
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Qualitative character of the result (Fig.3) is in agreement 
with that for the first task, though a  are moved to the 
right (compare Fig.3 and Fig.2). 
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Fig. 3. The second test task for the diffusion 

equation. Plot of the error function 
 

4. Explanation of the results obtained for the 
diffusion equation

For the explanation of the results obtained for the 
diffusion equation an analysis of difference schemes with the 
von Neumann spectral method is used. The idea of this 
method consists in the expansion of exact and numerical 
solutions in Fourier series on the layer t =const : 
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 For an exact solution of diffusion equation we have:  
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For the numerical solution we can represent 
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Fig. 4. Results of von Neumann spectral method 
using. Plots of error function:  

a) Averaging on all resolved wavelengths; 
b) Smaller interval of averaging 

If 
∂
∂

2

2

u
x

j

n
⎛

⎝
⎜

⎞

⎠
⎟ is approximated with the second order 

of accuracy, the phase errors are absent. Amplitude error 
during one time step may be calculated as λ λ/ e x . 
Function, characterising errors accumulated during the same 
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of schemes by the von Neumann method. In the common 
case phase ϕ  belongs to the interval ; phase [− π π, ]
ϕ π= ±  corresponds to the wavelength 2 h . Let's consider 
the value of amplitude errors averaged over all wavelengths 

resolved by the scheme - E E= ∫
1

0π
ϕ

π

( ) d ϕ . It can be 

chosen as the index of scheme quality. The result of such 
averaging is shown in Fig.4,a. It is seen that the dependence 
of error function E  on a   isn’t similar to the dependence 

F (a ) for the first test task (smoothing of delta function), 
but there are some analogies with the results for the second 
test task (compare Fig.3 and 4,a). It is reasoned by the fact 
that in spectral expansion of the solution for the latter task 
harmonics with small wavelengths ≈  play an essential 
role, while in the former task these harmonics are slightly 
represented, since the shape of solution is smooth and fluent. 
Therefore let’s take a smaller interval of averaging: 
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(Fig.4,b) is in good agreement with error function F (a ) for 

the Gauss function including the positions of a  
(compare Fig.1 and Fig.4,b) 
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So, the results of test tasks are in accordance  with 
the theory. Therefore scheme comparison on the basis of 
error function  is valid and may be used for the choice of 
an optimal scheme. 
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6. Test calculations for the Burgers equation 

 Von Neumann method doesn’t operate in case of 
nonlinear Buregers equation (1). That’s why this is the case 
where practically single way to compare schemes quality is 
analysis of test tasks solution using these schemes. 

 The problem of internal structure of the shock wave 
front within the framework of continuous medium model is 
chosen as the test task. Boundary conditions are the 

following:  ( u  for the existence of the 

solution in the form of the shock wave.) 
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 - is shock velocity. 

 

7. Description of the results 

1) Nonstationary shock waves ( D=0.5 and D=-0.5 ) 

 Results of calculating nonstationary shock waves 
are shown  in Fig.5. It is seen that the quality of the schemes 

is independent from the direction of the wave propagation. It 
can be explained by the fact that scheme for convective 
terms takes into account the direction of flow propagation 
(it's the well-known upwind principle), and scheme for 
diffusive terms is symmetric 

2) Stationary shock wave(D=0) 

Results for the stationary shock wave are represented in 
Fig.6. It's easy to see that in this case the scheme quality 
doesn’t depend on K. If we refer to the results obtained in 
nonstationary case we can notice that those for 

qualitatively agree with the results for stationary 
problem.  It is clear, since when  the role of time 
terms is insignificant even for nonstationary problems, i.e. 
even nonstationary process is described as quasi-stationary 

K → 0
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Fig. 5.  Plots of error function for the Burgers 
equation: 

a) Shock wave propagating to the right (D=0.5);  
b) Shock wave propagating to the left (D=-0.5 )  
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Fig. 6. Plot of error function for the Burgers equation. 
Stationary shock wave (D =0) 

 Two requirements are imposed to the numerical 
scheme if the stationary task is solved using time-marching 
approach with local time stepping: 

1) An optimal stationary solution must be obtained. It 
doesn’t change in marching from one stationary layer to 
another. Therefore, we can conclude about the scheme 
quality for stationary solutions when calculating 
nonstationary problem with . K → 0

2)  Nonstationary process of approaching to stationary 
solution is to be described as precise as possible (since the 
higher quality of describing nonstationary process, the less 
disturbances are introduced by the scheme in this process 
and the faster the solution converges). That’s why we are 
also interested in the scheme quality  when calculating 
nonstationary flows (with ). K ~ 1

So, the choice of an optimal scheme depends upon 
the purpose we follow. Let’s turn to the optimal scheme for 
the diffusion equation. If it is required to obtain stationary 
flow as fast as possible, i.e. when it is necessary to describe 
nonstationary process ( K ~ 1 )  with maximum accuracy, 
schemes with a  can be recommended for using. But if 
the accuracy of the stationary solution is more important, it is 
better to use . In principle, an adaptive algorithm is 
possible, when a  gradually decreases from 2 to 4/3 with 

decrease in convergence parameter 
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It must be noted, however, that in the case of the 
Burgers equation dependence  is absolutely another 
than that for the diffusion  equation. It appears to be 
explained by the non-linear interactions of second derivative 
approximation errors with convective terms and with errors 
of their approximation. But it may be noted that the relative 
change of errors from scheme to scheme in the case of the 
Burgers equation is very small (about 2-3%). It is far less 
than the relative change for the diffusion equation. (about 
100%). And so there is a hope that one can use the scheme 

witha

F a( )1

1 1=  without considerable risk to loose in quality. 
This scheme has a three-point stencil and therefore requires 
minimum quantity of calculations 

Conclusions 

1) For the diffusion equation schemes with a 1 1<  are not 
monotone. When  an optimal scheme for this 
equation is the scheme with ; when an 
optimal scheme for it is one with . It's possible to 
use an adaptive algorithm of changing a  from 2 to 4/3  as 
solution converges (i.e. the parameter of convergence 

(

K ~ 1
a 1 2~ K → 0

a 1 4 3~ /
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) diminishes). 

2) For choosing an optimal approximation of the viscous 
terms in the Navier-Stokes equations it is necessary to take 
into account their non-linear interaction with the convective 
terms. But tests show that in problems of such class, where 
both convection and diffusion are present, errors slightly 
depend upon the choice of second derivative approximation 
(if the second order of accuracy is guaranteed). That’s why 
scheme of central differences (a ), which requires 
minimal volume of calculations, can be recommended for 
these tasks. 
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