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Effects of Upstream Disturbances on a Pitching

NACA0012 Airfoil

Brandon E Merrill∗ and Yulia Peet†

Dynamically moving airfoils are encountered in several areas of flight and energy pro-
duction, including helicopter rotors, wind turbine blades, and maneuvering aircraft. A
clearer understanding of how freestream disturbances affect the aerodynamic forces on
pitching airfoils leads to improvements in aircraft and wind turbine design. In the present
study, our recently validated moving overlapping mesh methodology is used to perform a
direct numerical simulation of a NACA0012 airfoil pitching with oscillatory motion in the
presence of a turbulent wake created by an upstream cylinder. The global computational
domain is decomposed into a stationary background mesh, which contains the cylinder,
and a mesh constructed around the airfoil that is constrained to pitch with predetermined
reduced frequency, k=0.16. Present simulations are performed with chord based Reynolds
number Rec = 44, 000, with aerodynamic forces and vortex shedding properties being com-
pared between the pitching airfoil simulations with and without upstream disturbances.

I. Introduction

A greater understanding of the aerodynamic forces acting on airfoils with a wide variety of flow conditions
is imperative in creating flexible models to improve the fidelity of large scale aerodynamic simulations. While
many aspects of airfoil aerodynamics have been examined in depth, several facets have traditionally been
difficult to measure or simulate. The flow around pitching airfoils is one facet of research that has been
studied for several decades, although much is unknown regarding the nature of the flow when unsteady
flow conditions are present. The flow around pitching airfoils, especially as it relates to dynamic stall, has
ramifications for the efficiency and design of helicopter rotors,1,2 wind turbines,3 other rotating machinery
such as compressors,4 as well as extensions to the maneuverability of fixed wing aircraft.5,6

The general characteristics of pitching airfoils and mechanisms of dynamic stall are well understood in the
presence of steady inflow conditions, and several experimental and computational projects have examined
this topic. The lift force on a dynamically pitching-upward airfoil with steady inflow will generally increase
up to an angle of attack beyond its static stall angle until dynamic stall occurs. As an airfoil pitches upward,
a large vortex, referred to as a dynamic stall vortex (DSV), forms at the leading edge of an upward pitching
airfoil, creating a low pressure region, which then travels along the suction side of the airfoil toward the
trailing edge. The lower pressure on the suction side of the airfoil increases the lift, until the vortex nears
the trailing edge where it separates and a dramatic decrease in lift, dynamic stall, ensues. Dynamic stall
research typically focuses on the effects of altering pitching frequency, pitching amplitude, Reynolds number,
and Mach number, as well as possible ways to gain greater control of dynamic stall.7–12 However, unsteady
inflow conditions can also play a crucial role in the aerodynamics of pitching and plunging airfoils. Blades
on wind turbines operating in yawed or unsteady flow conditions, for instance, experience inflow velocity
that is periodic with respect to azimuthal angle.13,14 Turbulence, gusts, and vortices caused by upstream
structures, objects, or atmospheric conditions create unsteady inflow for helicopter rotors, wind turbine
blades, and wings on maneuvering aircraft. In order to create a more complete realization of dynamic stall
phenomena, the various velocity fluctuations commonly experienced by pitching airfoils in realistic situations
need to be included in future research and simulations.

At the present time, some experimental research has been performed to examine the effects of unsteady
inflow on pitching airfoils, while a much smaller amount of computational work has been done in this area. In
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the 1970’s Pierce et al.2 and Kottapalli et al.15 performed experiments on pitching helicopter blades using a
gust generator to produce periodic inflow conditions. Their results show that the varying freestream velocity
affects the pitching moment and drag experienced by the blade, and that the magnitudes of the forces
and moment change depending on the phase difference between the airfoil oscillation and inflow velocity
oscillation. Similar experimental investigations have been performed more recently by Shi and Ming on a
pitching delta wing, for improvements in the design of super-maneuverable aircraft.5,6

Experimental investigations of turbulence effects on pitching airfoils have been performed by Conger et
al.,16 Laneville et al.,17 and Chen et al.18 In the study by Chen et al., a turbulent wake was generated
upstream of a ramping airfoil by placing a small cylinder in the flow field. The experiment had a relatively
low chord based Reynolds number of 80,000. The effects of varied cylinder position with respect to the airfoil
was studied to compare the aerodynamic forces and moments with those experienced by a pitching airfoil
in steady freestream. Their work showed that dynamic stall events occur at larger angles of attack in the
presence of a turbulent wake when compared to steady inflow cases, although different vertical positions of
the cylinder had differing effects on the aerodynamic forces.

Little computational research has been performed regarding pitching airfoils with unsteady freestream
flow due to the difficulty of traditional computational fluid dynamics (CFD) solvers in handling moving
geometries with non-uniform inflow conditions, as well as the computational cost of such simulations. Recent
research published by Gharali et al.13,19 investigates two-dimensional pitching airfoils in the presence of
periodic inflow velocity using an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver. However, no
known computational simulations of pitching airfoils have been performed with turbulent inflow conditions,
yet information from such simulations would be pivotal in improving the fidelity of large scale models of
systems with realistic flow conditions. These enhanced models lead to improvements in the physical design
of aircraft and wind turbines.

Our newly developed and validated moving overlapping mesh methodology allows us to decompose the
global computational domain into a moving mesh and a stationary mesh. By enabling an entire mesh to
move, consistent resolution near the solid boundary of a moving object is easily maintained. A stationary
background mesh allows for unsteady boundary conditions to be straightforwardly implemented in the lab
reference frame, and for stationary objects to be placed elsewhere in the flow field. The formulation is cur-
rently built within a spectral element method (SEM) incompressible flow solver (Nek500020), and maintains
the global spectral spatial accuracy of the underlying solver.21

The present project simulates a NACA0012 airfoil with oscillatory pitching motion and chord based
Reynolds number Rec = 44, 000. We investigate its interactions with a turbulent wake generated by a
small stationary cylinder, with diameter based Reynolds number ReD = 3900, that disturbs the upstream
flow. A mesh is created around the three-dimensional extruded airfoil and motion is prescribed to the entire
mesh. This moving airfoil mesh is placed within a stationary background mesh that contains the cylinder.
Aerodynamic coefficients and the pressure values at the airfoil surface are compared between simulations with
and without the upstream disturbance. We present results that give a clearer understanding of the largely
unknown effects of disturbances on dynamic stall and oscillating airfoils in general. Results from initial
simulations performed without upstream disturbances are compared with experimental results of Panda and
Zaman22 who approximate the lift force on an oscillating airfoil using vorticity measurements in the near
wake.

II. Methods

Our moving overlapping mesh methodology is employed within the Nek5000 computational fluid dynamics
framework20 which utilizes the Spectral Element Method (SEM) for spatial discretization, and allows for up
to third order temporal discretization for solutions to the incompressible Navier-Stokes equations (1).

∂u
∂t + u · ∇u = −∇p + 1

Re∇
2u

∇ · u = 0 (1)

Spatial discretization is performed by dividing each subdomain into a set of elements wherein the solu-
tion is approximated using polynomial basis functions that pass through a discrete number of collocation
points with Gauss-Lobatto Legendre (GL) point distribution for velocity and Gauss Legendre (G) point
distribution for pressure. Exponential spatial convergence is achieved with polynomial order refinement,
which thus increases the number of GL and G points defined within each element. The moving overlapping
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mesh methodology has previously been shown to maintain this exponential spatial accuracy in the global
computational domain.21 Stability is achieved with minimal Schwarz-like iterations23 (usually two or three)
while maintaining temporal accuracy that is consistent with the global time integration scheme.21 The
method allows for large ranges of mesh motion and flexibility of the mesh to translate or rotate in two- and
three-dimensional simulations. Parallel computations achieve linear scaling to thousands of processors.

Within the formulation, a global domain, Ω, is decomposed into two overlapping subdomains, Ω1 and
Ω2. Velocity values are exchanged at subdomain interfaces, Γ12 and Γ21, and the mesh defined in subdomain
Ωi is prescribed a predetermined rotational or translational velocity w[i] (see Figure 1). Dirichlet conditions
are enforced on moving wall boundaries, ∂Ωw, that match the velocity of the moving rigid body.

Ω1(t)

Ω2(t)

Γ12

Γ21

∂ΩN

∂ΩD

∂Ωw

∂ΩN

∂ΩN

w[2]

Figure 1. Illustration of a decomposed global domain. Dashed lines denote a hole cut in the background mesh.

II.A. Handling Interfaces Between Meshes

Values at mesh interfaces, Γij , are determined by performing Lagrangian interpolation on values in the ad-
jacent subdomain from previous timesteps. This interpolation method, when coupled with the SEM solver,
gives spectrally accurate values at gridpoints on interface boundaries. Search and locate procedures are
carried out to express the location of a point on the interface of one subdomain (Ωi) in terms of the local co-
ordinates of a corresponding element in the other subdomain (Ωj). The problem is treated as an optimization
task, seeking to minimize residuals with the Newton-Raphson method.24 Temporal coupling at interfaces
is performed using an mth-order explicit interface extrapolation (IEXTm) scheme, using interpolated values
from previous timesteps. The mth order extrapolation operator is given in equation 2 with the coefficients
γpm given in table 1.

Em [u]
n

=

m∑
p=1

γpmu
n−p (2)

Table 1. Coefficients for the EXTm schemes, m=1,2,325

γp1 γp2 γp3

p=1 1 2 3

p=2 -1 -3

p=3 1

Stability of the extrapolation method has been examined using the one-dimensional unsteady diffusion
equation on two stationary overlapping subdomains with uniform point distribution. The grids overlapped to
ensure the grid points in the two domains coincided. The stability for the extrapolation scheme in the study
was confirmed analytically to be unconditionally stable for first order extrapolation with the backwards-
differentiation scheme of first or second order. For higher orders, the stability is dependent upon the mesh
overlap size and the number of extrapolation iterations.25 While a stability analysis of the extrapolation
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scheme used with moving grids is not available, practice has shown that global stability is achieved for
moving subdomain simulations with two or three iterations.

II.B. Arbitrary Lagrangian-Eulerian Formulation

Subdomain movement is handled with the Arbitrary Lagrangian-Eulerian (ALE) formulation, which com-
bines the attractive properties of both the Lagrangian formulation, where the reference system is attached
to ’particles’ in the fluid, and Eulerian formulation, where the reference system is fixed in space. One of its
primary advantages is the ability to assign an arbitrary velocity to discrete points on the mesh. The velocity
assigned to the mesh can be determined by some property of the flow, or it can be predetermined and its
movement unaffected by the flow. The explanation and derivation of the ALE formulation below follows the
general process given by Deville et al.26

The material derivative of a variable, f, given by

Df

Dt
=
∂f

∂t
+ u · ∇f (3)

where u(x, t) is the velocity of the fluid in the Eulerian formulation, describes the time evolution of f attached
to material points. If velocity w(x, t) is assigned to the computational domain, and w(x, t) 6= u(x, t),
a pseudo-material derivative can be defined for the moving domain, as if virtual particles are moving in
accordance with the domain, which we will call the ALE derivative

δf

δt
=
∂f

∂t
+ w · ∇f (4)

Note that if w(x, t) = 0 we recover the Eulerian description, or simply the partial time derivative, and if
w(x, t) = u(x, t) we arrive at the material derivative in the Lagrangian description. A relative velocity, c, is
defined with respect to the reference frame of the moving mesh

u = c + w, (5)

and the relationship between the material and ALE time derivative can then be given as

Df

Dt
=
δf

δt
+ c · ∇f. (6)

To account for mesh movement, the convective terms in the Navier-Stokes equations are altered to reflect
the new relative velocity, c.27 Since density is held constant for incompressible flow, the convective term of
the mass conservation equation is zero, and therefore, there is no change in the continuity equation. The
momentum conservation equation becomes

δu

δt
+ c · ∇u = −∇p +

1

Re
∇2u. (7)

Again, note that if mesh velocity w is equal to zero, the original Navier-Stokes equations (equation 1)
are recovered. Upon discretization, each gridpoint is assigned its own velocity value, allowing for flexible
movement, including rotation, although care must be taken to not excessively deform the grid.

II.C. Communicating Updates

In the present methodology, physical coordinates of gridpoints that lie on a moving subdomain’s interface
boundaries change with each timestep. The physical coordinates of gridpoints in the stationary subdomain
remain constant, although the relative positions of its interface points with respect to the adjacent subdomain
constantly change due to movement of the adjacent subdomain. Thus, updated coordinates are determined
and communicated once per timestep for each subdomain. Upon communication, the search and locate
procedures are performed to determine precise locations of interface points within the other subdomain,
and spectral interpolation is carried out to determine accurate velocity values. Once velocity values are
assigned to points on the interfaces, those boundaries are treated as Dirichlet conditions, and each subdomain
completes its computations for the current timestep without any additional communications to or from the
other subdomain.
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III. Results

To determine the effect of turbulent wakes on pitching airfoils a three-dimensional global computational
domain is decomposed into two overlapping subdomains. A mesh constructed around a NACA0012 airfoil
is constrained to move with a predetermined pitching motion, and a stationary background mesh contains
a small cylinder to generate the turbulent wake (a background mesh without a cylinder is also used for
baseline results, see Figure 2). All simulations are performed with chord-based Reynolds number of, Rec =

Figure 2. A cross section of the global computational domain for steady inflow simulations, showing element boundaries
of the moving airfoil mesh within the stationary background mesh.

44, 000. Pitching airfoil simulations are performed using 6th-order polynomial approximations for spatial
discretization within each element, and dynamic timestepping with a maximum timestep of ∆t∗max = 2 ×
10−4, although the average timestep in the simulations is approximately ∆t∗avg ≈ 5 × 10−5, where time is
nondimensionalized with the freestream velocity and chord length, t∗ = tU∞/c. Dynamic timestepping is
used to ensure that sufficient temporal resolution is achieved while allowing efficient use of computational
resources. Simulations use second order time integration with IEXT2 at interface boundaries. Two cases
will be compared as presented in Table 2

Position of Position of Airfoil

Case Cylinder (xc ,yc ) Quarter-Chord (xc ,yc )

I No Cylinder (1.2, 0)

II (0, 0) (1.2, 0)

Table 2. Pitching airfoil cases.

The aerodynamic coefficients of lift, drag, and pitching moment acting on the airfoil are calculated as

CL =
L

1
2ρU

2
∞S

(8)

CD =
D

1
2ρU

2
∞S

(9)

CM =
M

1
2ρU

2
∞Sc

, (10)

where L is the lift force, D is the drag force, M is the pitching moment (or torque), ρ is fluid density, U∞
is the inflow velocity, S is the planform area, and c is the chord length.

III.A. Oscillating Airfoil at Re = 44, 000

Here we discuss the results of Case I, which are used as a baseline for comparison with Case II. The meshes
for the the present case, as displayed in Figure 2, are prescribed steady inflow conditions on the left side
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(u = U∞), outflow conditions on the right side, and symmetry conditions on the top and bottom of the
global domain. The domain has a spanwise width of z/c=0.2, with periodic conditions prescribed on the
spanwise boundaries. Moving wall boundary conditions are prescribed at the surface of the airfoil, outflow
conditions are prescribed at the right boundary of the airfoil mesh, while all other interior boundaries in the
airfoil and background meshes use interface conditions to pass values between subdomains. The airfoil mesh
contains 54k elements ( 19M gridpoints) and the background mesh contains 16k ( 5M gridpoints). Grid
spacings at the airfoil surface are given in Table 3.

∆sU/c ∆sL/c ∆n/c ∆zmin/c ∆zmax/c

6.4× 10−3 9.0× 10−3 4.5× 10−5 1.3× 10−3 4.2× 10−3

Table 3. Airfoil grid parameters for present pitching airfoil simulations: maximum streamwise GL point spacing on the
upper (∆sU/c) and lower (∆sU/c) surfaces of the airfoil, normal spacing on the upper airfoil surface at the mid-chord
location (∆n/c), and the minimum (∆zmin/c) and maximum (∆zmax/c) spanwise GL point spacing.

The angle of attack for the NACA0012 airfoil pitching about its quarter-chord axis is prescribed as

α = 15.3◦ − 9.7◦cos (2πft) , (11)

where the reduced frequency is k ≡ πfc/U∞ = 0.16.
Simulation results are compared with the experimental results of Panda and Zaman,22 who used probes

in the wake of an oscillating airfoil collect velocity and vorticity data of the flow in the wake. The unsteady
lift force, reported in Ref. 22, is divided into a non-circulatory component and a circulatory component
according to Bisplinghoff et al.,28 where Panda and Zaman used the experimental wake data to approximate
only the circulatory component of the lift force acting on the airfoil. While the addition of the non-circulatory
component would change the value of the total lift force, the difference is fairly minor, and even negligible at
small reduced frequencies, and thus the total lift coefficient values from the present simulation is compared
with only the circulatory component of lift that is published in Ref. 22.

Three methods are described in Panda and Zaman22 for approximating the circulatory component of lift
by integration of the phase averaged measured vorticity data. The authors state that an unknown steady
contribution to the lift approximation exists due to vortices shed before the start of data collection, and thus
the lift is assumed to be zero at the minimum angle of attack in their lift coefficient plots. In the plots below,
data from Ref. 22 is shifted to give a lift value that matches present simulations at the minimum angle of
attack.
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Figure 3. Lift coefficients from present tests compared with approximations derived from experimental wake surveys by
Panda and Zaman.22 The red curves represent present simulation data for Case I, while the green, blue, and magenta
lines represent the circulatory component of the lift coefficient approximated from experimental wake data, which was
phase averaged over 80 cycles, using methods 1, 2, and 3, respectively as published in Panda and Zaman.22

Figure 3 presents the lift coefficient values for present simulations compared with the experimental ap-
proximations.22 Performing phase averages for simulations over 80 cycles, as was done for the experimental
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data, is not feasible considering the computational resources it would require, thus the instantaneous sim-
ulation data is compared with the phase averaged experimental approximations. We see that while the
general shapes of the curves are the same, the present simulation data reports higher lift values than the
experimental approximation, and though lift values during downstroke do not exactly follow the experimen-
tal approximations, the same features are present, namely a local minimum near α = 25◦ followed by an
increase in lift, then another stall event. Following the major stall event during the downstroke, the lift
values oscillate, in both simulation and experimental data, until the airfoil reaches its minimum angle of
attack, α = 5.6◦, after which it begins the next cycle. It is expected that averaging simulation data over
many cycles would produce better correlation with the experimental results.

5.6°

10.45°u

15.3°u

20.15°u

25.0°

20.15°d

15.3°d

10.45°d

Figure 4. Zoomed-in spanwise averaged streamwise velocity plots during the second cycle, at angles of attack posted in
bottom left corner of each snapshot. The subscript ’u’ denotes upstroke and ’d’ downstroke. Darkest blue represents
streamwise velocity less than u/U∞ = −1, and darkest red greater than u/U∞ = 3

Visualizations of the the spanwise averaged streamwise velocity (Figure 4) and spanwise vorticity (Fig-
ure 5) show the clockwise rotating dynamic stall vortex (DSV) forming and traveling toward the trailing edge
as the airfoil pitches upward. As the DSV nears the trailing edge, a counter-clockwise trailing edge vortex
(TEV) forms, which first appears in the α = 25◦ frames. When the airfoil begins its downstroke, another
clockwise vortex forms at the leading edge, which is smaller than the original DSV, and travels along the
upper surface of the airfoil until it detaches, causing another stall event.

By comparing the pressure coefficient values along the upper surface of the airfoil (Figure 6) with the
streamwise velocity (Figure 4) and spanwise vorticity (Figure 5) plots we see that the position of low pressure
valleys correlate with the location of vortex centers. Evidence of the forming DSV is found in the α = 10.45◦u
curve by the low pressure at the leading edge of the airfoil. We see that the low pressure region propagates
toward the trailing edge of the airfoil in the α = 15.3◦u and α = 20.15◦u curves. When the airfoil reaches its
maximum angle of attack the DSV has already detached, though in the α = 25.0◦ curve we find evidence of
the TEV at the trailing edge of the airfoil. The α = 20.15◦d curve shows that the pressure values corresponding
to the second major vortex are not as low as the initial DSV, though we see that the resulting TEV creates
a sharp pressure valley at the trailing edge.
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5.6°

10.45°u

15.3°u

20.15°u

25.0°

20.15°d

15.3°d

10.45°d

Figure 5. Zoomed-in spanwise averaged spanwise vorticity plots during the second cycle, at angles of attack posted
in bottom left corner of each plot. The subscript ’u’ denotes upstroke and ’d’ downstroke. Darkest blue represents
spanwise vorticity of less than ωzU∞/c = −40 (corresponding with clockwise fluid motion), and darkest red greater than
ωzU∞/c = 40 (corresponding with counter-clockwise fluid motion).

An indication of the strength of the DSV is obtained by performing a volume average of the spanwise
vorticity over a cylindrical volume centered at the vortex center:

Γ ≡

∣∣∣∫Vcyl
ω∗z dVcyl

∣∣∣
Vcyl

, (12)

where Vcyl is the volume of the cylinder being considered, and the non-dimensional spanwise vorticity,
ω∗z ≡ ωzU∞/c. The center of the vortex is located by finding the local spanwise vorticity minimum in the
spanwise averaged vorticity field. The strength of the DSV (Γ) is determined as the center reaches the
x/c = 1.95 position in the flow field, and integration is performed over a cylindrical volume with radius of
r/c = 0.25, as illustrated in Figure 7, and width, z/c = 0.2, which corresponds to the span of the domain.
Table 4 presents properties of the DSV at during this snapshot.

Vortex Center (xc ,yc ) (1.95,0.127)

Time (t∗) 27.9

Angle of Attack (α) 23.83ou
Vortex Strength (Γ) 10.547

Table 4. Properties of the DSV during the second pitching cycle of Case I as the center of the vortex reaches the
x/c = 1.95 position in the flow field.
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Figure 6. Pressure coefficient values along the suction surface of the airfoil at posted angles of attack. The pressure
coefficient values are averaged in the spanwise direction. The subscript ’u’ denotes upstroke and ’d’ downstroke.

Figure 7. Spanwise averaged spanwise vorticity plot when the center of the DSV during the second cycle reaches
x/c = 1.95 (t∗ = 27.9, α = 23.83o

u) for Case I. The circle outlines the volume over which the integral of vorticity is taken.
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III.B. Pitching Airfoil in a Turbulent Wake

In this section we discuss Case II, which is performed using the airfoil mesh presented in Section III.A,
but with a background mesh that contains an upstream cylinder for the generation of a turbulent wake, as
illustrated in Figure 8. For a description of boundary conditions refer to Section III.A, with the addition of

Figure 8. Mesh configuration for simulations of an oscillating airfoil in the presence of a turbulent wake. Only element
boundaries are shown.

stationary wall boundary conditions enforced on the upstream cylinder.
In the global computational domain, the horizontal distance from the center of the cylinder to the pitching

axis (quarter-chord) of the airfoil is x = 1.2c (≈ 13.5D), in terms of chord lengths (and cylinder diameters).
To give a diameter based Reynolds number of 3900 in a flow with chord based Reynolds number of 44,000,
the diameter of the cylinder relative to the chord length of the NACA0012 airfoil is D/c ≈ 8.86× 10−2. All
future length units will be nondimensionalized with respect to the chord length of the airfoil. The spanwise
width of the global domain is z/c = 0.2. The airfoil begins its first cycle at time zero, before the cylinder wake
has developed. Thus, the ensuing discussion will focus on the second cycle of the airfoil motion (although
the first cycle is also shown for completeness), where the turbulent wake is fully developed for the entire
region where the airfoil resides when the second cycle begins.
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Figure 9. Lift coefficient results from Case II compared results from Case I for the first and second cycles.

A comparison of the lift coefficient loops between Cases I and II (Figure 9) shows stark differences in the
lift that the airfoils experience in each case. The lift acting on the airfoil in Case II is quite oscillatory due
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to the incoming turbulent vortices shed from the upstream cylinder. We see that in Case I, the lift increases
at a slightly steeper rate starting at α ≈ 15ou, which corresponds to the formation of the DSV and its path
along the upper surface of the airfoil. In Case II we do not find evidence of a steeper rate of lift increase, and
in the second cycle we see that the maximum lift caused by the DSV does not reach as great a value as seen
in Case I. While some of the sharp lift oscillations in Case II temporarily give lift values of the same, or even
greater, magnitude when compared with Case I, the general trend shows lift values that are lower for the
disturbed case in both lift peaks. In the second cycle, the minimum lift values in both cases are comparable.
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Figure 10. Aerodynamic forces and moments from Case II compared with results from Case I for the first and second
cycles. The time (t∗ = tU∞/c) is labeled along the bottom axis while the corresponding angle of attack is along the top
axis.

Figure 10 displays the aerodynamic forces and moments acting on the airfoil in Cases I and II with respect
to time. In cycle two, Case I reports a global maximum lift of CL ≈ 2.67 at α ≈ 23.7ou, while Case II reports
a global maximum lift of CL ≈ 2.48 at α ≈ 24.6ou. A second lift peak, due to a second major vortex formed
during airfoil downstroke, occurs at α ≈ 22.2od in Case I reporting a lift value CL ≈ 1.79, while the second
lift peak of Case II is reported at a much later time with α ≈ 19.3od and local maximum lift CL ≈ 1.62. We
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see that stall occurs at a later time in Case II for both the DSV and second major vortex, similar to the
results of Chen and Choa18 which showed that stall of a constant rate pitching airfoil occurs at a later time
when upstream disturbances are present.

Evidence of stall is seen in the drag values as well, with a steep decrease in drag when stall occurs. After
initial stall occurs in Case I, a steep increase in drag immediately ensues reaching drag values comparable
to the first peak. This second drag peak correlates with the formation of the TEV, and a sharp decrease
in drag is again witnessed as the TEV detaches. Case II does not show clear signs of this large drag peak
due to the TEV. While the drag acting on the airfoil in Case II almost reaches the same global maximum
values of Cases I (though at a later time), the drag in nearly all other portions of the cycle is greatly reduced
by upstream disturbances. We see particular evidence of this when looking at the drag peak due to the
second major vortex formed during the airfoil downstroke, where Case II reports a local drag maximum of
CD ≈ 0.52 at α ≈ 19.3od, where the drag reported in Case I is about 50% larger with CD ≈ 0.79 at α ≈ 22.2od.

The magnitude of the pitching moment of the airfoil remains small until a large vortex begins to form on
the leading edge of the airfoil, when a sharp increase in the magnitude of the pitching moment is seen (to
large negative values) and continues to increase until the vortex detaches from the surface of the airfoil. In
Case I, large fluctuations in the pitching moments are seen for the majority of the cycle, while in Case II, we
see a large fluctuation in the pitching moment as a result of the DSV (though not as large as in Case I), but
the pitching moment remains near zero for the remainder of the cycle. Thus we see that the turbulent wake
incident upon the pitching airfoil alleviates much of the strong pitching moments the airfoil experiences.

5.6°

10.45°u

15.3°u

20.15°u

25.0°

20.15°d

15.3°d

10.45°d

Figure 11. Zoomed-in spanwise averaged streamwise velocity plots of Case II during the second cycle, at angles of
attack posted in bottom left corner of each snapshot. The subscript ’u’ denotes upstroke and ’d’ downstroke. Darkest
blue represents streamwise velocity less than u/U∞ = −1, and darkest red greater than u/U∞ = 3

Visual inspection of the spanwise averaged streamwise velocity (Figure 11) and spanwise vorticity (Fig-
ure 12) for Case II shows evidence of a forming dynamic stall vortex in the 20.15ou frames, though not as
large as the DSV seen in the 20.15ou frames of Case I (Figures 4 and 5). This is, in large part, due to the
later formation of the DSV in Case II, but also because the DSV in Case II is not as strong, as evidenced
by vorticity values of smaller magnitude. The other major features of the pitching airfoil cycle, as discussed
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5.6°

10.45°u

15.3°u

20.15°u

25.0°

20.15°d

15.3°d

10.45°d

Figure 12. Zoomed-in spanwise averaged spanwise vorticity plots during the second cycle, at angles of attack posted
in bottom left corner of each plot. The subscript ’u’ denotes upstroke and ’d’ downstroke. Darkest blue represents
spanwise vorticity of less than ωzU∞/c = −40 (corresponding with clockwise fluid motion), and darkest red greater than
ωzU∞/c = 40 (corresponding with counter-clockwise fluid motion).

in Section III.A, are also seen in the figures presented here, though with vortices formed at a later time.
A comparison of the pressure coefficients along the suction side of the airfoils in Case I and II (Figure 13),
again gives evidence of later vortex formation in Case II. The α = 20.15ou pressure profile plot shows that
the DSV in Case I is roughly at the half chord distance (where the center of the vortex is determined by
the lowest pressure values), while the DSV is forming at the leading edge of the airfoil in Case II. When the
pitching airfoil begins its downstroke a second major vortex is formed at the leading edge. The α = 20.15od
plots shows evidence of the TEV in Case I resulting from the detachment of the second major vortex, while
the pressure values in Case II show that the second major vortex is fairly weak and its center is located at
about the half chord location.

Case I Case II

Vortex Center (xc ,yc ) (1.95,0.127) (1.95,0.206)

Time (t∗) 27.9 29.3

Angle of Attack (α) 23.83ou 24.98ou
Vortex Strength (Γ) 10.547 7.453

Table 5. Properties of the DSV during the second pitching cycle of Cases I and II as the center of the vortex reaches
the x/c = 1.95 position in the flow field.

The strength of the DSV in Case II is calculated as the center of the vortex crosses the x/c = 1.95
position in the flow field (Figure 14). A comparison with Case I (see Table 5) shows that the DSV in Case
II crosses the x/c = 1.95 position with a much higher vertical position that the DSV in Case I (y/c = 0.206
in Case II versus y/c = 0.127 in Case I), and at a much later time (t∗ = 24.98 in Case II versus t∗ = 23.83
in Case I). The strength of the DSV in Case II is nearly %30 weaker than the DSV in Case I. In addition to
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Figure 13. Spanwise averaged pressure coefficients along the suction surface of the airfoil for Cases I and II during
the second cycle at angles of attack posted in the top center of each plot. The subscript ’u’ denotes upstroke and ’d’
downstroke.

Figure 14. Spanwise averaged spanwise vorticity plot when the center of the DSV in the second cycle reaches x/c = 1.95
(t∗ = 29.3, α = 24.99o

u) for Case II. The circle outlines the volume over which the integral of vorticity is taken.

the previous discussion of the later formation of the DSV in Case II, we also see that the vortices are not as
strong when formed in the presence of incoming turbulence.
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IV. Conclusion

A turbulent wake incident upon a pitching airfoil largely affects the forces and moments acting on the
airfoil, and the flow structure of the fluid, including vortex formation. Dynamic stall of a pitching airfoil
occurs at a later time (and larger angle of attack) when in the presence of a turbulent wake, due to the
delayed formation, and thus detachment, of the dynamic stall vortex. While the maximum lift acting on
the airfoil does not reach as large of values with upstream disturbances, the drag and magnitude of pitching
moments are greatly reduced for most of the pitching cycle. In engineering applications, this reduced drag
can lead to more efficient aerodynamic systems involving pitching airfoils, such as in rotary-wing flight
and wind turbine power production. In addition, lower pitching moments decrease the structural strain on
dynamically pitching blades and wings, potentially improving the life span of many mechanical systems.
Weaker dynamic stall vortices shed from the airfoil in disturbed upstream flow leads to less intrusive vortex
interactions with downstream structures, as in the case of blade-vortex interaction.

Future simulations will be performed to complete a third cycle for each of the cases presented here, where
results will be analyzed and compared with the second cycle to determine whether approximations achieved
during the second cycle accurately represent what should be expected in future cycles. Furthermore, a test
case will be performed with the upstream cylinder at a lower vertical position with respect to the airfoil,
and analyses will be performed to determine the effect of greater turbulence intensity on the pressure side
of the airfoil in comparison with the two cases discussed here. A power spectral density (PSD) analysis will
additionally be performed on the aerodynamic coefficients in these cases to determine how the turbulent
wake affects the frequencies most important in determining the forces and moments on the airfoil. Similar
tests will be performed to determine the effect of upstream disturbances on pitching airfoils with different
Reynolds numbers, reduced frequencies, airfoil shapes, and turbulent inflow properties.
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