
Elastic Membrane. Formulation and Validation.

1 Formulation

Governing equations for a fluid flow with elastic membrane model are incom-
pressible Navier-Stokes equations

ui, t + uj ui, j = τij,j + fi (1)
ui, i = 0, (2)

where the stress tensor is defined by

τij = −P

ρ
+ ν(ui, j + uj, i). (3)

Boundary conditions on the elastic membrane are formulated as follows:

σn − pe = −σkT (4)
u = w (5)

The first condition is the traction boundary condition, with σn – the normal
fluid stress acting on the membrane, pe – external pressure, T – the longitudinal
tension and k – the wall curvature. The second condition is the kinematic
condition, where w is the wall velocity. The details of the implementation can
be found in Ref. [1].

2 2D validation

2.1 Steady case

For validation in two dimensions we simulate a steady flow in a two-dimensional
channel with the bottom solid wall and top wall being a combination of solid
and elastic sections [2]. All geometrical and physical parameters are taken from
the Ref. [2], namely, pe = 0.93 Pa, Re = 300, T = T0/β, T0 = 1.610245 N m−1,
β is ranging from 1 to 30. For every Reynolds number, there exists a critical
surface tension T ?, such that solutions are stable for T > T ?, and they become
unstable for T ≤ T ?. In terms of the parameter β, solutions are stable for
β < β?, and unstable for β ≥ β?. Dependence of the critical parameter β?

on the Reynolds number is illustrated in Fig. 1 for our calculations and for
the calculations of Luo & Pedley[3]. Exact values of the critical parameter β?

are summarized in Table 1. It is seen that the results are very close (within
the error bars Err(β?) = ±1). The parameter space below the neutral stability
curve correspond to stable solutions, and above the curve - to unstable solutions.
With the unsteady solver, steady solutions can not be obtained for β ≥ β? due to
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Figure 1: Dependence of the critical parameter β? on Reynolds number. Filled
circles and the solid line, current simulations; open circles and the dashed line,
simulations of Luo&Peldey [3]

Table 1: Dependence of the critical parameter β? on Reynolds number

Reynolds number Re = 100 Re = 200 Re = 300 Re = 400 Re = 500

Current calculations 53 38 28 21 17

Luo&Pedley [3] 54 – 27.5 20 15

the instability. We have performed grid refinement study for stable solutions for
β = 20 at two different Reynolds numbers, Re = 300 and Re = 400. Number of
collocation points within the elements was varied from l = 5 to l = 7. Differences
were insignificant between l = 6 and l = 7 solutions, see Fig. 3, so we consider
solutions with l = 6 to be spatially converged. Comparison of the wall shape
and the pressure drop with the simulations of Luo & Pedley [2] for Re = 300
and Re = 400, β = 20, with l = 6 is shown in Fig. 4.

2.2 Unsteady case

When the tension T falls below the critical tension T ? (or parameter β exceeds
β?), the solution is unstable to small perturbations. We have computed the
unstable case with Re = 300 and β = 30 following the article of Luo&Peldey [3]
(β? ∼ 28 for this Reynolds number). We have found that the temporal behavior
depends on initial conditions, see Fig. 6, where three different initial conditions
for Re = 300 were used: plane channel flow, steady solution corresponding to
β = 25, and steady solution corresponding to β = 27.5 (the highest β for which
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Figure 2: Dependence of ymin versus β, Re = 300. Line, simulations of Luo
& Pedley [2], symbols - current simulations, vertical dashed line signifies the
critical tension, β = 28, so that steady solutions are not available for β > 28.
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Figure 3: Grid refinement study. β = 20, Re = 300 and Re = 400. Dashed line,
l = 5; solid line, l = 6; symbols, l = 7 (every 3rd grid point is shown).
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Figure 4: Comparison with the simulations of Luo & Pedley[2] at β = 20,
Re = 300 and Re = 400. Solid line, current simulations; dashed line, simulations
of Luo & Pedley [2].

we were able to obtain a steady solution for this Reynolds number). Fig. 6
shows the wall position yw at xw = 8.5 versus time. It is seen that all three
cases reach the periodic state, but the system response is completely different.
When the initial conditions (β = 27.5) are close to the current value of tension
(β = 30), the perturbations are small enough, so that the system responds
in a linear regime, close to a simple harmonic. When the initial conditions
are further from the current state (β = 25 versus β = 30), the non-linear
effects are more pronounced, and the second frequency is activated. When initial
conditions are very far from the current state (channel flow corresponding to a
solid wall with β = 0), the response is highly-nonlinear. This trend was also
observed at other values of Reynolds number, as well as in the Ref. [3]. Due to
the extreme sensitivity of the system behavior to initial conditions, it is quite
difficult to compare the temporal behavior with the previously published results.
Luo&Pedley [3] calculated the case with Re = 300 and β = 30 by imposing a
small disturbance on the steady solution, disturbance being a slightly different
value of initial tension. Comparison of our calculations with initial β = 27.5,
which is the closest steady solution to β = 30 which we could obtain, with the
calculations of Luo&Pedley [3] is shown in Fig. 7, where the wall position yw and
wall pressure pw at xw = 8.5 are plotted. It is seen that the agreement is fairly
good, with amplitudes for both the wall position and pressure matching well.
Our frequency (f ∼ 0.07 Hz) is a little bit lower than the frequency observed
in Luo&Pedley (f ∼ 0.1 Hz). To understand the reason for the difference in
frequency, we have calculated frequencies of linear harmonic response for β = β?

at different Re, since steady solutions with the tension very close to T ? can be
obtained as initial conditions to provide the linear response. The dependence
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Figure 5: Dependence of the linear response frequency on Reynolds number.
Symbols, calculated frequencies; line, spline fit.

Table 2: Dependence of the linear response frequency on Reynolds number

Reynolds number Re = 100 Re = 200 Re = 300 Re = 400 Re = 500

Frequency, Hz 0.16 0.09 0.07 0.06 0.05

on Reynolds number is shown in Fig. 5 and tabulated in Table 2. The trend is
that the frequency decreases with the Reynolds number. Thus, larger frequency
in calculations of Luo&Pedley [3] might signify the larger amount of dissipation
in their finite element code versus the low-dissipation spectral element method.
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(a) Initial conditions corre-
spond to flow with a solid
wall (β = 0)
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Figure 6: Influence of initial conditions on temporal behavior of unsteady solu-
tions. Re = 300, β = 30.
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Figure 7: Comparison of temporal behavior with calculations of Luo&Pedley.
Wall position yw and pressure at xw = 8.5 versus time is plotted. Top row -
current calculations, bottom row - calculations of Luo&Pedley [3]
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