Elastic Membrane. Formulation and Validation.

1 Formulation

Governing equations for a fluid flow with elastic membrane model are incom-
pressible Navier-Stokes equations

Uit +uj U,y = Tijgt fi (1)
ui; = 0, (2)

where the stress tensor is defined by
P
Tij = *;JFV(UMJFU]'J)- (3)

Boundary conditions on the elastic membrane are formulated as follows:

Op —Pe = —0kT (4)

u = w (5)

The first condition is the traction boundary condition, with o,, — the normal
fluid stress acting on the membrane, p, — external pressure, T — the longitudinal
tension and k — the wall curvature. The second condition is the kinematic
condition, where w is the wall velocity. The details of the implementation can
be found in Ref. [1].

2 2D validation

2.1 Steady case

For validation in two dimensions we simulate a steady flow in a two-dimensional
channel with the bottom solid wall and top wall being a combination of solid
and elastic sections [2]. All geometrical and physical parameters are taken from
the Ref. [2], namely, p. = 0.93 Pa, Re = 300, T = Ty /3, Ty = 1.610245 N m~!,
0 is ranging from 1 to 30. For every Reynolds number, there exists a critical
surface tension 7™, such that solutions are stable for T > T™, and they become
unstable for T" < T*. In terms of the parameter (3, solutions are stable for
B < (*, and unstable for § > (3*. Dependence of the critical parameter 5*
on the Reynolds number is illustrated in Fig. 1 for our calculations and for
the calculations of Luo & Pedley[3]. Exact values of the critical parameter g*
are summarized in Table 1. It is seen that the results are very close (within
the error bars Err(0*) = £1). The parameter space below the neutral stability
curve correspond to stable solutions, and above the curve - to unstable solutions.
With the unsteady solver, steady solutions can not be obtained for 3 > #* due to
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Figure 1: Dependence of the critical parameter 5* on Reynolds number. Filled
circles and the solid line, current simulations; open circles and the dashed line,
simulations of Luo&Peldey [3]

Table 1: Dependence of the critical parameter * on Reynolds number

Reynolds number Re =100 | Re =200 | Re =300 | Re =400 | Re = 500
Current calculations 53 38 28 21 17
Luo&Pedley [3] 54 - 27.5 20 15

the instability. We have performed grid refinement study for stable solutions for
B = 20 at two different Reynolds numbers, Re = 300 and Re = 400. Number of
collocation points within the elements was varied from [ = 5 to ! = 7. Differences
were insignificant between [ = 6 and [ = 7 solutions, see Fig. 3, so we consider
solutions with [ = 6 to be spatially converged. Comparison of the wall shape
and the pressure drop with the simulations of Luo & Pedley [2] for Re = 300
and Re = 400, 8 = 20, with [ = 6 is shown in Fig. 4.

2.2 Unsteady case

When the tension T falls below the critical tension T* (or parameter 3 exceeds
(%), the solution is unstable to small perturbations. We have computed the
unstable case with Re = 300 and 8 = 30 following the article of Luo&Peldey [3]
(6* ~ 28 for this Reynolds number). We have found that the temporal behavior
depends on initial conditions, see Fig. 6, where three different initial conditions
for Re = 300 were used: plane channel flow, steady solution corresponding to
B = 25, and steady solution corresponding to 8 = 27.5 (the highest § for which
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Figure 2: Dependence of i, versus 8, Re = 300. Line, simulations of Luo
& Pedley [2], symbols - current simulations, vertical dashed line signifies the
critical tension, B = 28, so that steady solutions are not available for 3 > 28.
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Figure 3: Grid refinement study. g = 20, Re = 300 and Re = 400. Dashed line,
[ = 5; solid line, [ = 6; symbols, | = 7 (every 3rd grid point is shown).
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Figure 4: Comparison with the simulations of Luo & Pedley[2] at 5 = 20,
Re = 300 and Re = 400. Solid line, current simulations; dashed line, simulations
of Luo & Pedley [2].

we were able to obtain a steady solution for this Reynolds number). Fig. 6
shows the wall position y,, at z,, = 8.5 versus time. It is seen that all three
cases reach the periodic state, but the system response is completely different.
When the initial conditions (8 = 27.5) are close to the current value of tension
(8 = 30), the perturbations are small enough, so that the system responds
in a linear regime, close to a simple harmonic. When the initial conditions
are further from the current state (6 = 25 versus § = 30), the non-linear
effects are more pronounced, and the second frequency is activated. When initial
conditions are very far from the current state (channel flow corresponding to a
solid wall with 8 = 0), the response is highly-nonlinear. This trend was also
observed at other values of Reynolds number, as well as in the Ref. [3]. Due to
the extreme sensitivity of the system behavior to initial conditions, it is quite
difficult to compare the temporal behavior with the previously published results.
Luo&Pedley [3] calculated the case with Re = 300 and § = 30 by imposing a
small disturbance on the steady solution, disturbance being a slightly different
value of initial tension. Comparison of our calculations with initial § = 27.5,
which is the closest steady solution to 8 = 30 which we could obtain, with the
calculations of Luo&Pedley [3] is shown in Fig. 7, where the wall position y,, and
wall pressure p,, at x,, = 8.5 are plotted. It is seen that the agreement is fairly
good, with amplitudes for both the wall position and pressure matching well.
Our frequency (f ~ 0.07 Hz) is a little bit lower than the frequency observed
in Luo&Pedley (f ~ 0.1 Hz). To understand the reason for the difference in
frequency, we have calculated frequencies of linear harmonic response for g = g*
at different Re, since steady solutions with the tension very close to T* can be
obtained as initial conditions to provide the linear response. The dependence
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Figure 5: Dependence of the linear response frequency on Reynolds number.
Symbols, calculated frequencies; line, spline fit.

Table 2: Dependence of the linear response frequency on Reynolds number

Reynolds number | Re =100 | Re =200 | Re =300 | Re =400 | Re =500
Frequency, Hz 0.16 0.09 0.07 0.06 0.05

on Reynolds number is shown in Fig. 5 and tabulated in Table 2. The trend is
that the frequency decreases with the Reynolds number. Thus, larger frequency
in calculations of Luo&Pedley [3] might signify the larger amount of dissipation
in their finite element code versus the low-dissipation spectral element method.
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(a) Initial conditions corre-
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Figure 6: Influence of initial conditions on temporal behavior of unsteady solu-

tions. Re = 300, 5 = 30.
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Figure 7: Comparison of temporal behavior with calculations of Luo&Pedley.
Wall position y,, and pressure at z,, = 8.5 versus time is plotted. Top row -
current calculations, bottom row - calculations of Luo&Pedley [3]



