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Towards a stable and accurate coupling of
compressible and incompressible flow solvers

By K. Mattsson, I. Iourokina AND F. Ham

1. Motivation and objectives

A consistent and accurate scheme does not guarantee an accurate solution of the Partial
Differential Equation (PDE). According to the famous paper by Lax et al. (1956), a
consistent approximation of a well-posed linear PDE will converge to the true solution
if and only if the scheme is stable. This theorem is of great importance, since it is in
general easier to prove stability than to prove convergence directly.

Lax and Richtmyer’s theorem implies that convergence to the true solution at a fixed
time T is achieved as the grid size h — 0. With this definition of stability, the error of
the solution may, in fact, grow exponentially in time for realistic mesh sizes. As pointed
out by Carpenter et al. (1993), it is therefore important to devise schemes that do not
allow a growth in time that is not called for by the differential equation. Such schemes
are called strictly (or time) stable.

One way to obtain a strictly stable and accurate scheme for a linear problem is to i)
approximate the derivatives of the initial boundary value problem with accurate, non
dissipative operators that satisfy a summation by parts (SBP) formula (Kreiss et al.
(1974)), and ii) use a specific procedure, referred to as the Simultaneous Approximation
Term (SAT) method (Carpenter et al. (1994)) for implementation of boundary conditions.

For nonlinear problems, stability by energy estimates can not be obtained in general.
However, Strang (1964) showed that if the solution of the nonlinear differential equa-
tion is sufficiently smooth, convergence follows if the linearized approximation is stable,
meaning that linear stability is a necessary and sometimes sufficient condition for sta-
bility. Nonlinear instabilities (due to under-resolved features) are usually divided into
two different phenomena: shocks and aliasing. These factors can make central difference
schemes unstable when applied to nonlinear problems on under-resolved grids. In this
case, some type of artificial damping is needed, such as filtering or artificial dissipation.

We begin by discussing the SBP property for the first and second derivative difference
operator and then introduce the SAT method. Then, we will show how to combine two
different compressible SBP schemes by using the SAT method. Finally, we will use the
same methodology to combine a compressible fourth order accurate SBP discretization
with an incompressible unstructured SBP discretization of CDP.

1.1. The SBP property

SBP operators arise naturally in various nodal based space discretizations. The main
classes are spectral methods, finite elements, finite differences and finite volumes. High
order accurate SBP operators for finite differences were derived in Kreiss et al. (1974)
and in Mattsson et al. (2004). The SBP property for the unstructured node centered
finite volume method was shown in Nordstrom et al. (2003) Recently, we developed an
unstructured SBP discretization of CDP. To simplify the introduction of the SBP and
SAT concepts, we will restrict the rigorous analysis to one dimensional problems. The
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generalization to multi dimensional problems is straightforward but somewhat tedious
and lengthy to describe in detail.

Before we start describing the SBP property, some definitions are needed. Let the
inner product for real valued m x 1 vector functions u,v € L2[l,r] be defined by (u,v) =
J/ uT vdz, and let the corresponding norm be [u[|?> = (u,u). The domain (I <z <r) is
discretized using N+1 grid points.

The numerical approximation of the £ : th component of u at grid point x; is denoted
v We define a discrete solution vector o™ = [v], o], - - -, v}, where vg = [vg, 05, - -+, vf"]"
is the discrete approximation of u at the left boundary. We define an inner product
for discrete real valued vector-functions u,v € RNT*™ by (4, v)g = uT Hv, where
H =H" > 0, with a corresponding norm ||v||% = vT H v. The vectors

éo = [1,0,...0", ex=10,..,0,1]", (1.1)
of size N + 1 x 1, will frequently be used in subsequent sections.

1.1.1. The first derivative

Consider the hyperbolic scalar equation, u; + u, = 0 (excluding the boundary condi-
tion). Notice first that (u,u;) + (u¢, u) = d/dt||ul|?. Integration by parts leads to

d r

Tlull® = =(u,we) = (ug, ) = —u?[7 (1.2)

where we introduce the notation u?|I" = u?(r,t) — u?(l,t). To simplify the notation for
the continuous problem, we will denote u(k,t) by ug. A discrete approximation can be
written v; + Dv = 0. We introduce the following definition:

DEFINITION 1.1. A difference operator D = H~'Q approzimating 0/0 x is said to be a
first derivative SBP operator if i) H = HT > 0 and ii) Q+QT = B = diag (—1,0...,0,1).

By multiplying the semi discrete approximation by v7 H and by adding the transpose
and utilizing Definition 1.1, we obtain

d
o' H oy + UtTHT vy = EHUH%I = 20T(Q+ Q"= 11(2) — U]2V . (1.3)

(1.3) is a discrete analog to the integration by parts (IBP) formula (1.2) in the continuous
case.
1.1.2. The second derivative

For parabolic problems, we need an SBP operator also for the second derivative. Con-
sider the heat equation u; = u... Multiplying by u and integration by parts leads to

d
%HUHQ = (u7umz) + (Uzmu) = 2“”:12‘2 - 2”“00“2 . (1'4)

A discrete approximation is given by v; = Dov. We introduce the following definition

DEFINITION 1.2. A difference operator Do = H=1(—M + BS) approzimating 8*/0 x*
is said to be a second derivative SBP operator if v (M + M7T)x >0, if S includes an ap-
prozimation of the first derivative operator at the boundary and B = diag (—1,0...,0,1).

By multiplying the semi discrete approximation by v” H, adding the transpose, and
utilizing Definition 1.2, we obtain

d
EHUH%{ZQ”UN(S’U)N—QUQ(SU)O—UT(M+MT)U. (1.5)
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To obtain an energy estimate, it suffices that 27 (M + M7T)z > 0, assuming that the
boundary terms are correctly implemented.

To obtain stability estimates for a mixed hyperbolic-parabolic problem it is necessary
that the norm H used in the construction of the first and second derivative SBP opera-
tors are the same. High order accurate second derivative SBP operators were developed
in Mattsson et al. (2004). For completion, the 4th order accurate operators based on
diagonal norms, for both the first and second derivative approximations, are listed in
Appendix 5.

1.2. The SAT method

By using an SBP operator, a strict stable approximation for a Cauchy problem is ob-
tained. Nevertheless, because the SBP property alone does not guarantee strict stability
for an initial boundary value problem, a specific boundary treatment is also required. Im-
position of the boundary condition explicitly, i.e. combination of the difference operator
and the boundary operator into a modified operator, usually destroys the SBP property.
In general, this makes it impossible to obtain an energy estimate. This boundary proce-
dure, often used in practical calculations, is referred to as the injection method and can
result in an unwanted exponential growth of the solution; see for example Strand (1996)
and Mattsson (2003).

The basic idea behind the SAT method is to impose the boundary conditions weakly
as a penalty term, such that the SBP property is preserved and such that we get an
energy estimate. As an example of the simple yet powerful SAT boundary procedure, we
consider the hyperbolic scalar equation,

ugt+u, =0, I<zx<r, t>0, uy=g. (1.6)

Integration by parts leads to

d
Slull? =gt — 2. (17)

A discrete approximation of (1.6) using an SBP operator to discretized the domain com-
bined with the SAT method for the boundary condition is given by

Huvy + Qu = 1éo {vo — g1} , (1.8)

where éy is defined in (1.1).
The energy method in (1.8) leads to

d 9 72 9 9 T 2
— = —¢qf — —(2r -1 — .
dt”U“H 27_191 vy — (27 ) vo 27—1gl

Clearly, an energy estimate exists for 7 > 1/2. By choosing 7 = 1, the energy method
leads to

d
vl =gt = vk = (vo — 9)* . (1.9)

(1.9) is a discrete analog of the integration by parts formula (1.7) in the continuous case,
where the extra term (vg — g;)? introduces a small additional damping. Note that no
artificial dissipation is included.
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2. Interface conditions

Consider the following linearized system of equations with an interface at x = ¢

us + Auy = (Biug), + F1 1<ax<i, t>0,

2.1
pt+Apz:(Brpz)m+Fr 1<zx<r, t>0, ( )

where Fj , are forcing functions and A, B, B, are symmetric matrices. Since A is sym-
metric,

A=XAXT, (2.2)

where the columns of X are the eigenvectors to A, and A is the eigenvalue matrix.
The energy method applied to (2.1) leads to

d

2 (Il +lIpl?) = BTy + BT, + DI + FO + IT; , (2.3)
where BT , denotes the boundary terms, F'O the forcing terms, DI corresponds to the
physical dissipation and IT the interface coupling term. The interface conditions at the
interface x = i are given by

u=p, Biu, = B,py . (2.4)

The main focus here is on obtaining a stable and accurate interface coupling for the

corresponding semi discrete problem. We can have different forcing F; # F. and different

physical viscosity B; # B, in the two regions, and the following analysis still holds.
The semi discrete finite difference approximation to (2.1) and (2.4) can be written

v+ (D@ A= ((Dy);@B)v+ P +PY +PL+PY +F |

w + (D ® A)p = ((D2); ® By)w+ P!+ PY + Pl + P} + F, | (25)
where the inviscid interface penalties are given by
Pli = (Hf1 ®@I))ey ® A_(vn — wp) ,
Pli=—(H '@l )eo ® Ay (wo — vn) , (2.6)
where
Ay o =XAy X
and

2AL =A+Al; 2A_=A—|A].
Here we have introduced the Kronecker product

0,0 D tee Co,q—1 D
cp-10D -+ cpo1g-1D

where C is a p X ¢ matrix and D is a m X n matrix. Two useful rules for the Kronecker
product are (A® B)(C @ D) = (AC) ® (BD) and (A® B)T = AT @ BT.
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The corresponding viscid interface penalties are given by
PY =+ (H '@ V)en @ (Bi(Siv)n — Br(S,w)o)
+ (Hl_l ® (I)Z)(SlT (9 Bl)ejv (9 (UN — wo)
PY =~ (H; ' ©¥,)eo ® (B,(S,w)o - Bi(Siv) )
—(H'®®,)(ST ® B,)eg ® (wo —vy)

(2.7)

We can have different SBP discretizations in the left (1) and right (r) domain respectively,
and the analysis still holds. The energy method applied to (2.5) leads to

d
E(aniﬁ +|lw||},) = ITY + IT" + BT + DI + FO . (2.8)
BT corresponds to the boundary terms, DI to the physical dissipation and IT! =
leMl y1 + yX M, y, to the inviscid part of interface coupling, where

1 I, -1 -1
My = [—HT QHT—I] » My = { -1, I }

and

_ [IA ] TIA Y2
I A2 X w] T A2 X w

The viscid part of the interface coupling is given by
ITV = 20§ B(Sv)n (I + ¥ + &) + 2wy Bi(Sw)o(—1 + ¥, + &)
— 200 B (Sw)o (¥ + ®,) — 2wl Bi(Sv)n (U, + D)) '
A stable coupling requires that i) I77 < 0, and ii) IT" = 0. The first condition holds if
m=1,1,=1. (2.9)
The second condition holds if
U, =U ¥=v—-1 ¢ =-V &.=7—-V. (2.10)

Notice that WU is a free parameter, but its value will affect the eigenvalues i.e. the stiffness
of the problem. To minimize stiffness we chose ¥ = % Together, the interface conditions
(2.9) and (2.10) lead to a stable interface coupling

v + IT! = +(UN — wO)TA_(UN — wo) — (’UN — wO)TA+(vN — ’LU()) .

3. Computations and further analysis

Here, we want to test and validate the boundary and interface treatment by convecting
a Taylor vortex (G.I. Taylor (1918)) across the interface, thereby coupling two domains in
two dimensions. The Taylor vortex is an analytic solution to the Navier Stokes equations
and has the following form:

Mr —r2

% = Tgmap Py ) o= =0

where vy is tangential velocity, v, is radial velocity, v, is spanwise velocity, and r is
the distance from the center of the vortex. This circular vortex is convected with the
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free-stream from one computational domain to another. The size of the domains is ap-
proximately 18 x 15 in terms of the radius of the vortex with 144 x 96 computational
grid points in each domain.

3.1. Compressible-Compressible coupling

We compare two different finite difference approximations for the compressible Navier-
Stokes equations in two dimensions. The spatial derivatives in both methods are approx-
imated with fourth-order accurate central-differences in the interior. The first type of
operators introduced in Xiong (2004) has a non-SBP boundary closure, while the oth-
ers (see Appendix 5) are constructed with an SBP boundary closure. We use implicit
time-advancement with approximate factorization. The two dimensional Navier-Stokes
equations are written in primitive variables:

ug + Arug + Asuy = (Briug + Biauy), + (Boiu, + Baauy),y + F
where
u' = 1[p, u, v, Y.
Details of the numerical implementation of the compressible code can be found in Xiong
(2004). The computational domain consists of two blocks that are patched together to
a global domain by using the SAT method by penalizing the characteristic variables, as

described in (2.5). We also include the case in which we instead penalize the variables,
i.e. we replace the characteristic interface penalties (2.6) with

Pl=(H'®I)en ® A(vn — wo)

PL— —(H-' @ TI,)e0 @ A(wo — vn) (3.1)
Four numerical test cases, referred to as cases A, B, C' and D, are analyzed and represent-
ing different boundary closures for the interface coupling. For methods A and B we are
using the SBP operators, and for methods C' and D we are using the non-SBP operators.
In addition, methods B and D are implemented using the characteristic penalties, as
given by (2.5). For methods A and C we are using the non-characteristic penalties (3.1)
to couple the two domains.

The L2 error was computed for the streamwise velocity component w for rather low
Reynolds number Re = 330 with respect to the radius of the vortex. We observed that
methods A and C, corresponding to the non-characteristic penalization, are unstable for
the given problem.

To further test methods B and D, viscosity was reduced to zero, thereby establishing a
very rigorous test for stability. No artificial dissipation was added. Here it was observed
that method D, which is the combination of characteristics penalties with non-SBP
boundary operators, also proves to be unstable. This is no surprise, as method D does
not lead to an energy estimate, and hence, the technique is not guaranteed to be stable.

To illustrate the nature of instability of the penalty method for non-characteristic
penalization and for non-SBP operators, we plot the contours of streamwise velocity
when the vortex just crosses the interface for methods A (SBP and non-characteristic
penalty) and D (characteristic penalty and non-SBP), for Re = co in Fig 1. One can see
that the nature of instability is completely different for these two methods. For method
A, which is a combination of SBP and non-characteristic penalization, the vortex itself
is distorted, due to the violation of characteristic information propagation. However, for
method D, which is a combination of characteristic penalty and non-SBP, the vortex
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(a) Method A. (b) Method D.

FIGURE 1. Contours of streamwise velocity when the vortex just crossed the interface.

itself seems to be perfectly transformed, but the numerical errors are accumulated at the
interface due to lack of boundary cancellation.

The same contour plots for methods B and C are plotted in Fig 2. As expected, for
method C, which is a combination of non-SBP and non-characteristic penalization, we
get both numerical errors at the interface and distortion of the vortex. For method B,
which is the energy stable combination of SBP operators and characteristic penalties, we
get the perfect shape of the vortex with no numerical noise accumulated at the interface.

The conclusion from this study is that only method B, which corresponds to charac-
teristic penalization combined with SBP operators, can be used for stable coupling of two
compressible codes. There might, of course, be other stable interface coupling techniques
in addition to the methods outlined here. The strength of the SBP and SAT technique
(method B) is that we can guarantee that the method is stable and accurate.

3.2. Compressible-Incompressible coupling

The same methodology as in the previous section is here used to couple the fourth
order accurate and compressible SBP discretization with an unstructured node centered
FV incompressible SBP discretization. Since we have a different number of continuous
equations in each domain, strictly bounded energy estimates can no longer be obtained.
Nevertheless, each side is treated with characteristic (upwind and downwind) interface
penalties. We initiate an inviscid Taylor vortex in the compressible domain and let the
vortex be swept down by the free stream and enter into the incompressible domain. No
artificial dissipation is added, so this is a real test of the stability property of the multi-
physics and multi-code coupling. The results are shown in Figure 3. In the incompressible
domain, we only penalize the right going (positive) velocities that we obtain from the
compressible domain. In the compressible domain, we need to specify all of the primitive
variables:

u' = 1[p, u, v, TY.
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FIGURE 2. Contours of streamwise velocity when the vortex just crossed the interface.

Since the density p is constant in the incompressible formulation we penalize against
Poo = 1. For temperature, we use 7' = T, = 1. The coupling does not introduce any
instabilities (such as the spurious m-mode). We can see that the vortex is slightly distorted
(compressed) after entering the incompressible domain. This is probably due to a non-
optimal pressure treatment. We believe a more correct coupling will also consider the
pressure coupling at the interface. This is something we will analyze further.

4. Conclusions

The results from this study indicate that the SBP and SAT technique is a very robust
and efficient method in coupling different flow solvers. Coupling of two compressible
solvers can be shown to be stable and accurate using the SAT technique. For coupling
of a compressible and an incompressible solver, there are still some improvements to be
made. In a coming paper, a new interface coupling that takes into account the pressure
terms will be analyzed and tested.
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5. Appendix: Difference operators
5.1. Fourth order accurate SBP operator

The first and second derivative SBP operators are used in the computations (methods
A and B). The interior scheme is a fourth order accurate central scheme with a second
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FI1GURE 3. The velocity contour of the vortex going from compressible to incompressible
domain, at three different locations.

order boundary closure. The discrete norm H is defined:
17 -

48
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The discrete difference SBP operator approximating % we denote D = H~'(Q, and is
defined:

24 59 4 3 7
—1% 31 ~17 —31 O 0 0
-+ 0 &£ 0 0 0 0
4 59 59 4

4 5 59 40 0
p-1|¥ 00 s § 8 _a
h | 98 o8 ; 19 49 1

o 0 5 -3 0 3 -5

The discrete 4th order accurate SBP operator Dy = H~!(—M + BS) approximating
% is given by

2 -5 4 -1 0 0 0
1 —2 1 0 0 0 0
4 59 110 59 4
_4 59 110 29 - 0 0
PR B N L
2 | —19 19 M} 19 ’
o 0 -+ & 5 4 1
12 3 2 3 12

and the 3rd order accurate boundary derivative operator BS is given by,

_u o3 3 1
6 3 2 3
1

= =

1
SRR
5.2. Fourth order accurate non-SBP operator
The first and second derivative non-SBP operators are used in the computations (methods
C and D). The interior scheme is a fourth order accurate central scheme. The first

derivative operator has a fourth order accurate boundary closure:

—25 48 -36 16 -3 0 0
1 |-3 -10 18 =6 1 0 0
D=1 1 -8 0 8 -1 0

The second derivative non-SBP operator is given by

11 -20 6 4 -1 0 0
. 1 135 —-104 114 —-56 11 0 0
D, = 1272 -1 16 =30 16 -1 0

and has a third order accurate boundary closure.
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