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Towards Large Eddy Simulation of Film-Cooling Flows
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Film cooling is used in turbine engines to avoid the critical heat loads on blade surfaces.
The flowfield resulting from hot and cold gas interaction is rather complex and film-cooling
effectiveness can be significantly reduced if intensive mixing occurs. The purpose of the
present study is to investigate this interaction numerically, using Large Eddy Simulation.
Special computational procedure coupling two different numerical codes is developed in
order to tackle this problem. The performance of the coupling procedure is tested on
steady and unsteady laminar flow problems. This methodology is then applied to the
calculations of a jet in a crossflow as a model problem representing the flow interactions
occurring during film-cooling.

I. Introduction

The overall performance of the gas turbine engine increases with the turbine inlet temperature. In
modern turbines the hot gas temperature exceeds the melting point of the blade material. Film cooling,
along with other cooling mechanisms (impingement cooling, rib/pin augmented cooling etc.), is used in
turbine engines to alleviate the turbine blade heat loads. Since the cool air for film cooling is drawn from
the compressor, blade cooling implies an aerodynamic penalty. The complex mechanism of turbulent mixing
between hot and cold gases makes it challenging to design film cooling schemes which give good and reliable
cooling performance and minimize losses. Computational investigation of this problem can shed some light
onto the film cooling physics, thus helping designers in choosing the optimum configuration.

A number of experimental studies of this problem have been done in the past. Different geometries of
the cooled surface were investigated, featuring flat plate,1, 2 cylinder,3, 4, 5 gas turbine airfoil.6, 7, 8, 9 Among
numerical investigations of film-cooling are the series of calculations by Leylek et al.,10, 11, 12 simulations
of Tyagi et al.,13 who performed a detailed analysis of film-cooling flowfield above the flat plate. Some
numerical studies of the airfoil film-cooling have also been done.14, 15

Summarizing the results obtained by the previous investigators, we can identify several important features
of the problem. First of all, the flow in the film hole is far from the fully developed Poiseuille flow, especially
when realistic small L/d ratios are used. Moreover, as Leylek et al.10 showed, under certain conditions
the peak turbulence levels occur inside the film hole, thus making it the region of the dominant turbulence
production. The behavior of the flow downstream of the jet exit is quite sensitive to the details of the flow
inside the film hole. Also, strong coupling exists between the flow above the film-cooling surface and the
flow in the film hole. Therefore, it is difficult to obtain a good performance by modeling the coolant inflow
as a prescribed artificial boundary condition; the film hole and plenum geometry should be included in the
simulations in order to accurately describe the phenomenon.

The vast majority of numerical simulations of film-cooling flows have been obtained using Reynolds-
averaged Navier-Stokes equations with two-equation models for turbulence. However, complex anisotropic
turbulent structures pertinent to this type of flows are not resolved with this approach (for example, see
Ref. 13). Large Eddy Simulations, which compute the large-scale turbulent structures directly as opposed
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to modeling them, is much more better for this problem. There are very few Large Eddy Simulations of film
cooling flows, documented in the literature. Calculations of Tyagi et al.13 is one recent study. The film-
cooled surface in their investigations is a flat plate. Equations solved are the incompressible Navier-Stokes
equations together with the scalar equation for temperature. Since in the real gas turbine engine the flow
is in high-subsonic or transonic regime, the full compressible equations should generally be used for better
approximation of the film-cooling environment.

To the authors knowledge, there are no detailed numerical investigations, such as Large Eddy Simulations
or Direct Numerical Simulations, of film-cooling flows in the vicinity of the leading edge of a turbine blade.
Such a simulation must represent the turbine blade with a compressible flow around it, film-holes carrying
the coolant and the plenum with a slow moving flow. Due to the difference in geometry and flow regimes,
numerical methods which are the most efficient for describing each of these components individually, are
also different. Instead of trying to pick one numerical code which would work ”in average” for the whole
problem, separate numerical codes for each individual component can be used. This way one can be sure
that the best performance for each part of the problem is achieved, resulting in good overall performance,
provided that efficient and accurate coupling procedure can be proposed.

In the present paper, such a ”composite” numerical method is developed. Numerical code solving com-
pressible Navier-Stokes equations is utilized in the region above the cooled surface. The code allows for
an arbitrary curvature of the blade surface, which enables investigations of film-cooling at the leading edge
region of a model turbine blade. Low Mach number approximation is used for the flow inside the plenum
and film holes. The coupling procedure used to join these codes together is described in this paper. The
implementation of coupling procedure is extensively tested on laminar steady and unsteady problems. Fi-
nally, this method is applied to the calculations of jet in a crossflow as a model problem representing the
flow interactions occurring during film-cooling.

II. Numerical method

The goal of performing Large Eddy Simulations of film-cooling in the leading edge region of a model
turbine blade motivated the development of a special numerical procedure. Figure 1 shows the schematic of
a model turbine blade with film-cooling holes in the vicinity of a leading edge. The film-cooling holes are
fed by a plenum.

Figure 1. Schematic of a model turbine
blade with film-holes.

We can identify two different regions pertinent to this film-
cooling configuration.

1. Region exterior to the turbine blade surface is shown as
striped in Figure 1. The flow which impinges a turbine
blade after leaving the combustor occupies this region.
This flow is usually at a high-subsonic or transonic state
and it carries free-stream turbulence with it. Compress-
ibility effects are important in this region. Therefore,
fully compressible Navier-Stokes equations are solved in
the exterior region.

2. Plenum and film holes are shown in black in Figure 1.
Mach number is rather small inside the supply plenum
since the flow is practically stagnant there due to a large
volume of plenum chamber. Use of compressible code
without preconditioners in this region would result in se-
vere time step limitations. Efficient preconditioners for
the full Navier-Stokes equations continue to be a topic
of research in various groups. Alternatively, low Mach
number approximation can be employed. In the present
study, plenum and film holes are treated numerically with
a low Mach number variable density code.

Therefore, each of these two regions is calculated with its own numerical code. Special parallel interface
is created for coupling these two codes together and providing an exchange of boundary conditions.
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A. Compressible code

Compressible code which is used in the exterior region (striped region in Fig. 1) was developed by Z.
Xiong.16 Compressible Navier-Stokes equations in primitive variables are solved numerically using implicit
time integration with an approximately-factorized difference scheme. The spatial discretization is achieved
by mapping the body-fitted mesh coordinates from physical space (x, y, z) to the uniform computational
space (ξ, η, z). Fourth-order accurate central-difference scheme is used for first - and second- derivatives in
the computational space. Details of the numerical implementation of the compressible code can be found in
Ref. 17.

B. Low Mach number code

Low Mach number code which is used in the plenum and film holes (black region in Fig. 1) is written by
C. Pierce.18 The set of equations solved numerically is the low Mach number approximation of the Navier-
Stokes equations written in conservative form in cylindrical coordinates. Velocity components are staggered
with respect to density and other scalars in both space and time.19 Second order central difference scheme
is used for the integration of momentum equations, while QUICK scheme20 is employed for scalar advection
to avoid the formation of spatial oscillations. Second-order Crank-Nikolson scheme with sub-iterations is
used for time advancement. Advection and diffusion terms in radial and azimuthal directions are treated
implicitly. Poisson equation for pressure is solved with the multigrid method. For more details, the reader
is referred to Ref. 18.

Both codes are written in LES formulation with dynamic Smagorinsky eddy-viscosity model21 used for
the treatment of subgrid-scale terms.

C. Coupling the codes

Parallel interface for coupling the two codes is written on MPI platform. It constructs two disjoint groups
of processes - one for each code. All communications within each group are performed using intracommuni-
cators. Message passing between two groups is accomplished with the help of an intercommunicator. Time
advancement of both codes is synchronized by choosing the global time step equal to the smallest among
time steps of individual codes, as dictated by stability requirement: �τ = min(�τ1,�τ2). Exchange of
variables across interfaces between computational domains of the two codes is performed at every time step.
Details of implementation of this exchange are described in this section.

Computational domain

The upper half of the computational domain used in the calculations is shown at Figure 2. Compress-
ible code domain corresponds to a region exterior to the turbine blade and shown as striped in Fig. 2. Low
Mach number code domain corresponds to plenum and film hole in Fig. 2. Since the low Mach number code
domain has to be cylindrical (the code is written in cylindrical coordinates) and surface of a model turbine
blade is curved, there must be a region of overlap between two domains, which physically corresponds to
the region above the turbine blade surface where cooling gas injection takes place. This region of overlap is
calculated by both codes.

Only one boundary of the compressible code domain intersects the low Mach number code domain. This
boundary is part of the turbine blade surface, and the intersection occurs at a place, where cooling gas is
injected. Variables from the low Mach number code should be supplied to the compressible code at this
location, which is schematically shown by the arrow 1 in Fig. 2. Boundaries of the low Mach number code
domain which intersect the compressible code domain are shown in bold lines in Fig. 2. These are ”free”
boundaries of the low Mach number code domain, since they are not part of film hole walls. Variables
from the compressible code should be supplied to the low Mach number code at these boundaries, which is
schematically shown by arrows 2 in Fig. 2.

1. Variables supplied from the low Mach number code to the compressible code (referred as II C 1)
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Figure 2. Upper part of a computational
domain for calculation of film-cooling geom-
etry.

Variables, which are solved for in the compressible code, are
{ρ, u, v, w, T}. All these variables should be specified at the
location of cooling gas injection. Various ways of specifying
these variables have been tested (the details of the test cases are
described later in the paper). However, the best performance
was achieved by interpolating all of the variables {ρ, u, v, w, T }
from the low Mach number code.

2. Variables supplied from the compressible code to the low
Mach number code (referred as II C 2)

In low Mach number code boundary conditions are required
for the following variables. Momentum equations need val-
ues of three components of velocity {u, v, w} at the bound-
aries. Scalar transport equation requires specification of a
scalar (temperature) at the boundary. Density is obtained
from temperature through the equation of state, therefore, no boundary conditions for density is required.
{u, v, w, T } are interpolated from compressible code at the ”free” boundaries of low Mach number code
domain (boundary surfaces of low Mach number code domain intersecting compressible code domain). The
same procedure is applied regardless of whether the ”free” boundary corresponds to an inflow or outflow.

In addition, we need boundary conditions for pressure for solving the Poisson equation. In the low
Mach number approximation only the second order pressure P (2)(�x, t) enters the equations of motion (see,
for example, Ref. 22). It is decoupled from density and temperature fluctuations and determined by the
constraint on the divergence of velocity, much like the pressure in incompressible equations. Zeroth-order
pressure P (0)(t) plays the role of the global thermodynamic pressure and enters the equation of state.
Pressure field obtained in compressible equations is P compr(�x, t) = P (0)(t) + P (2)(�x, t). Taking gradient of
P we have ∇P (�x, t) = ∇P (2)(�x, t).

In the present method, we solve the Poisson equation with Neumann boundary conditions for P (2).
We specify the value of derivative ∂P (2)

∂�n in the direction normal to the boundary surface. We interpolate
∂P (2)

∂�n = ∂P compr

∂�n from the gradients of the compressible pressure field at the ”free” boundaries of low Mach
number code domain intersecting the compressible code domain. Zeroth-order pressure P (0) is then added
to the calculated field of P (2) in order to set the right value of the total static pressure. We find the value
of P (0) by matching P compr = P (0) + P (2) at one specific location in the region of overlap.

Other choices for specifying boundary conditions at the ”free” boundaries of the low Mach number code
domain are possible, for example, Dirichlet boundary conditions for the Poisson equation, normal derivatives
for velocities instead of velocities itself. However, the method described above proved to work the best.

We use bilinear interpolation to interpolate values both from compressible to low Mach number code
and from low Mach number to compressible code. Since the low Mach number code has a second-order
accurate space discretization, increasing the order of interpolation beyond the second order does not lead to
any further advantage, which was confirmed by numerical tests.

III. Testing the numerical method

There are two major questions which need to be addressed to check if the coupling procedure described
above works satisfactorily.

1. Recall that there exists a region of overlap between the computational domains of the two codes (see
Fig. 2). Since this overlap region is being computed by two different codes, it would be desirable for
the convergence of the overall problem that individual solutions were close to each other in this region.
The closeness of analytical solutions of compressible and low Mach number equations in the overlap
region is provided by the fact that this region is contained within the turbine blade boundary layer,
where the Mach number is small. However, it is necessary to check whether the numerical solutions are
also close. So, the first part of the testing procedure investigates the closeness of solutions of individual
codes in the regime of low Mach number.

2. The second part concerns the implementation of coupling procedure and behavior of the coupled
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solution. Besides the closeness of solutions of individual codes one also needs to test the quality of the
coupled solution. Convergence of the coupled solution to the solutions of individual codes as well as the
accuracy of boundary condition exchange is investigated in the second part of the testing procedure.

A. Closeness of solutions of individual codes

The ability of two codes to individually reproduce similar results in the low Mach number regime was tested
by placing the low Mach number code domain completely inside the compressible code domain in a low
Mach number flow. One-way coupling was implemented. The low Mach number code obtained information
from compressible code through all the boundaries by the method described in subsection II C 2. However,
no information was transferred from the low Mach number code to the compressible code. Both steady and
unsteady tests were performed in this setup.

1. Steady tests (referred as III A 1)

Figure 3. Computational domain for the
steady test case. Temperature contours are
shown.

Steady flow around a model turbine blade with uniform free-
stream velocity U∞ parallel to the flat portion of a blade surface
was chosen as a steady test case. Schematic configuration of
the computational domain is shown in Figure 3. The size of the
compressible code domain is (16D, 7.5D, 7D), where D is the
diameter of the turbine blade leading edge. No-slip isothermal
boundary conditions were employed everywhere at the turbine
blade surface. For the test case shown, temperature at the
wall was taken to be Tw = 2T0∞. Temperature contours along
the plane perpendicular to the blade surface are also shown in
Fig. 3 to show the size of the boundary layer. A cylindrical
pipe with the diameter 0.5D and the height 0.5D was placed
inside the compressible code domain. The bottom surface of
the cylinder was located 0.01D above the turbine blade surface,
thus making the cylinder fall well inside the boundary layer. The low Mach number code was used inside
the cylindrical domain. Boundary conditions interpolated from compressible code as described in subsection
II C 2 were specified at all boundaries of the low Mach number code domain. Flow parameters were
M∞ = 0.05 for the compressible code, ReD = U∞D

ν = 1000 for both codes.
Both codes were converged to the steady state and solutions obtained by the two codes were compared.

Profiles of streamwise and vertical velocities, as well as temperature, taken through the point with maximum
discrepancy, are shown in Fig. 4.
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Figure 4. Comparison of boundary layer profiles calculated with two codes.

It can be seen that the agreement between the two solutions is rather good.
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2. Unsteady tests (referred as III A 2)

In order to check if unsteadiness influences the degree to which solutions differ from each other, the following
unsteady test case was performed. Computational domain for the compressible code for this test case was
the same as shown in Fig. 3. First, steady flow around the blade with uniform free-stream velocity was
obtained. This is denoted as {ρ, ū, v̄, w̄, T̄}. Flow parameters were kept the same as in subsection III A 1
except that the turbine blade surface was colder: Tw = 1.075T0∞.

Velocity disturbance in the form of a circular Taylor vortex23 was superimposed on the steady flow around
the turbine blade:

v′φ =
Mr

16πν2t2
exp(

−r2

4νt
); v′r = v′z = 0, (1)

where v′φ is tangential velocity, v′r is radial velocity, v′z is spanwise velocity and r is the distance from the
center of the vortex.

Circular Taylor vortex is an analytical solution of unsteady viscous incompressible equations. Here
M =

∫ ∞
0 2πrvrdr is an invariant of the flow.

Initial conditions for the present unsteady test case were set as

ρ = ρ

u = ū + u′

v = v̄ + v′

w = 0
T = T̄ .

Here u′ and v′ are disturbances from Eq. 1 written in cartesian coordinates. Parameters t and M of
Eq. 1 were chosen to set initial radius of the vortex RT /D = 0.33 (RT is the distance from the vortex center
to the point of maximum velocity) and initial velocity disturbance level v′max/U∞ = 1%. The center of the
vortex was located 4D above the blade surface and initially 4D upstream of the low Mach number code
domain. The vortex was convected with the mean flow and captured by the low Mach number code as it
passed through it.

Two-dimensional rectangular as well as three-dimensional cylindrical low Mach number code domains
were investigated. Rectangular domain was of the size (0.5D× 1.5D), cylindrical domain had a radius 0.5D
and a height 1.5D. For rectangular configuration, two sets of tests were performed.

• Low Mach number code domain is perpendicular to the main stream. The lower boundary of the
domain is located 1.5D higher than the turbine blade surface.

• Low Mach number code domain is inclined at 45◦ to the main stream. This test case was conducted
in order to check whether the relative skewness of the grid lines of two codes influences the results.

For cylindrical configuration, the flow is two-dimensional, i.e. there is no variation of flow parameters in
spanwise direction of the blade coordinate system. Typical snapshots of the vertical velocity v calculated
with both codes are overlaid in Fig. 5 for perpendicular and inclined rectangular domains. The moment
when the center of the vortex is in the low Mach number code domain is shown. It can be seen that the
contours of vertical velocity of the two solutions are very close to each other. The same was observed for all
other variables for both rectangular and cylindrical low Mach number code domains. Moreover, contours of
vertical velocity show the largest difference.

Maximum difference between flow variables was calculated over the low Mach number code domain as

Δui =
max

∣∣ucompr
i − ulowMach

i

∣∣

U∞
(2)

for velocity components and

ΔP =
max

∣
∣P compr − P lowMach

∣
∣

ρ∞U2∞
(3)

for pressure.
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(a) Perpendicular domain. (b) Inclined domain.

Figure 5. Vertical velocity contours for the convecting Taylor vortex.

The difference in velocity is plotted versus computational time in Fig. 6 for rectangular and cylindrical
domains. The difference is larger when the center of the vortex is inside the low Mach number code domain.
From Fig. 6(a) we see that orientation of the domain does not influence the maximum difference between
solutions.

The difference in pressure, when properly normalized (Eq. 3), is about two orders of magnitude smaller
than difference in velocity and is therefore not plotted here. It is consistent with the fact that the pressure
gradient for the Taylor vortex satisfies

∂p′/∂r = ρv′2/r. (4)

It is seen that pressure disturbance is of second order compared to velocity disturbance, which explains the
smaller value of the pressure difference.
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(a) Rectangular low Mach number code domain.
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(b) Cylindrical low Mach number code domain.

Figure 6. Maximum discrepancy between velocity components for convecting Taylor vortex.

It can be noticed that for the cylindrical domain the maximum difference does not exceed 0.2% and for
the rectangular domain it is even less. Maximum error of 0.002 is comparable to the value of M2

∞ = 0.0025.
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Error of the order of M2
∞ is an inherent error due to the difference between the solution of low Mach number

equations and the solution of compressible equations with small but finite M∞.

Test cases described above show that:

1. Compressible code and low Mach number code give very close numerical solutions when the Mach
number of the physical problem is small.

2. Method of supplying boundary conditions from compressible to low Mach number code shows good
performance.

B. Implementation of the coupling procedure

The implementation of the coupling procedure was tested using the problem of the convecting Taylor vortex
was again considered. Computational domain for this test case is shown at Figure 7. All distances are
non-dimensionalized by the initial radius of Taylor vortex RT .

Compressible 

code domain

Low Mach number 

code domain

Compressible 

code domain

Low Mach number 

code domain

Figure 7. Computational domain for test-
ing the coupling procedure. Vertical veloc-
ity contours are shown.

Low Mach number code domain is located at the left of the
compressible code domain with the region of overlap between
x = 0 and x = 7.7. A uniform free-stream with velocity parallel
to x-axis �v∞ = (U∞, 0, 0) is taken as the undisturbed flow. This
uniform flow is specified at the bottom and top boundaries of
both domains. Reynolds number is U∞RT /ν = 330. Mach
number M∞ = 0.15 is used in the compressible code.

Disturbances in the form of a circular Taylor vortex (Eq. 1)
are superimposed on the uniform flow. Initial coordinates of
the center of a vortex are (−13.55, 7.58), i.e. to the left from
the inflow boundary of the low Mach number code domain
(x = −9). Therefore, Taylor vortex is supplied through the
inflow boundary of the low Mach number code domain and is
convected with the uniform main stream. The moment when
the vortex is completely inside the overlap region is shown in
Fig. 7. Outflow boundary of the low Mach number code domain
(x = 7.7) gets information from compressible code according to
the method described in subsection II C 2. Inflow boundary for
the compressible code (x = 0) obtains variables from low Mach number code as described in subsection II C 1.

Good performance of boundary conditions supplied from compressible to low Mach number code was
revealed in section A, where the low Mach number code domain was fully surrounded by the compressible
code domain. The present setup, however, allows the performance of boundary conditions supplied from low
Mach number to compressible code to be tested.

The quality of numerical solution of the compressible code can be judged by looking at the levels of the
dilatation. From Eq. 1 we can find the dilatation of the Taylor vortex as

div�v′ =
1
r

∂

∂r
(rv′r) +

1
r

∂v′φ
∂φ

+
∂v′z
∂z

= 0, (5)

since v′r = v′z = 0 and
∂v′

φ

∂φ = 0.
In the inviscid formulation, Taylor vortex simply convects with the main flow. Viscous effects actually

generates weak dilatation.24 However, for the present disturbance level of 1% we can consider the linearized
problem and write the solution as �v = �v∞ + �v′ using the principle of superposition. The dilatation of the
superposed (linearized) solution should also therefore be zero. Another idealization comes from the fact that
Taylor vortex is the solution of the incompressible equations, but a finite Mach number M∞ = 0.15 is used
in the compressible code. However, this Mach number is still small enough and we can expect the analytical
values for the dilatation to be non-significant.

Therefore, we can judge the accuracy of the boundary conditions by looking at the dilatation levels of
the numerical solution of compressible code as the vortex is entering the computational domain.

First, the solution of the uncoupled problem was obtained as a reference case. Low Mach number code
was not running. Disturbances (u′, v′) at the inflow boundary of the compressible code were calculated from
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the Eq. 1, where
t = t0 + t′, r =

√
(x − x0 + u∞t′)2 + (y − y0)2. (6)

t0 is initial time specified in the beginning of the calculations to set initial radius of the vortex RT ; t′ is time
passed from the beginning of the calculations; (x0, y0) are coordinates of the initial position of the vortex
center; u∞t′ is the distance which vortex traveled due to the convection.

Three possibilities for the inflow boundary conditions were considered, which are summarized in Table 1:

A Velocity components are set according to �v = �v∞ + �v′. Temperature is set to T∞, density is calculated
from the continuity equation.

B Velocity components and temperature are the same as in method A, but density is strictly set to ρ∞
instead of being calculated from the continuity equation.

C Boundary conditions based on locally one-dimensional Riemann invariants formed from �v∞ + �v′, T∞, ρ∞
and variables interpolated from the interior of the domain are considered.16

Maximum dilatation in the compressible domain is plotted versus x-coordinate through the center of
the vortex in Figure 8(a) for all three methods. When the center of the vortex is far to the left from the
compressible domain, dilatation levels are practically zero, corresponding to the uniform flow. Dilatation
reaches its maximum when the vortex center crosses the inflow boundary x = 0 for the methods B and C.
This is due to the noise coming from the inflow boundary conditions. When disturbances are convected
downstream further from the inflow boundary, dilatation levels come back to negligible value, which shows
that numerical scheme holds the analytical value of almost zero dilatation pretty well. Method A (with
density calculated from the continuity equation) performs the best when disturbances are crossing the inflow
boundary. However, after disturbances have gone through and the inflow approaches the uniform state, the
method becomes unstable. Boundary conditions based on Riemann invariants show the largest dilatation
levels when disturbances are entering the domain. Method B, when all variables are strictly enforced, seems
to give the best results for this test case. Note, however, that strictly speaking method B is overposed for
uncoupled compressible flow. However, in the application of interest the low Mach number and the com-
pressible domains are fully coupled. The ”interface” is an interior region and full transfer of all variables
is physically justified. Therefore, method B was used for supplying boundary conditions from low Mach
number to compressible code in the coupled formulation.

Two variations of method B are possible when {ρ, u, v, w, T } are supplied from low Mach number to com-
pressible code (see Table 1). They reflect two different ways of specifying the density.

B1 Density for compressible code is interpolated from the density of low Mach number code ρcompr =
ρlowMach.

B2 Density for compressible code is calculated through the equation of state from the pressure, which is
interpolated from the low Mach number code: ρcompr = P lowMach/R T compr, where R is the gas
constant.

Both of these methods were investigated, and dilatation levels obtained for the coupled problem are
plotted in the Figure 8(b) together with the method B of uncoupled problem.

Uncoupled problem Coupled problem
A �v, T∞ specified, ρ – from continuity B1 ρcompr = ρlowMach

B ρ,�v, T∞ specified B2 ρcompr = P lowMach/R T compr

C Riemann invariants

Table 1. Methods for specifying inflow boundary conditions

First, one can notice that maximum dilatation is reduced for the coupled problem compared to the
uncoupled problem. This is probably due to the fact that inflow disturbances calculated from Eq. 1 using
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Figure 8. Dilatation levels in the compressible code versus x-coordinate of the vortex center.

Eq. 6 are worse approximation than disturbances calculated numerically by low Mach number code. When
we compare the two variants of the method B for the coupled problem, we note that variant B2 (with
density calculated from the pressure through the equation of state) performs better than the variant B1
when disturbances are crossing the domain, but fails to come back to zero-dilatation level when disturbances
are convected away. Therefore, variant B1 of method B, which is a simple interpolation of all five variables
{ρ, u, v, w, T} from low Mach number to compressible code gives the best overall performance. It was chosen
as the basic method for supplying boundary conditions to the compressible code.

Maximum discrepancy between the components of velocity obtained by two codes for the coupled problem
calculated with Eq. 2 is shown in Fig. 9. The difference in pressure calculated with Eq. 3 is again about two
orders of magnitude smaller than difference in velocity and not plotted here.
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Xvortex
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0.0001

0.0002
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0.0005

Δ
u i

Streamwise velocity

Vertical velocity

Figure 9. Maximum discrepancy for the cou-
pled problem.

The difference between solutions for the fully coupled prob-
lem is even smaller than the difference for one-way coupled
problem (see subsection III A 2), which is probably due to the
fact that two-way coupling enables simultaneous adjustment of
solutions of two codes to each other through a feedback mech-
anism. It is worth noting that maximum discrepancy does not
show a distinct peak as dilatation levels do, but stays at about
the same level over the whole period when vortex is inside the
computational domain. This is because the maximum discrep-
ancy is caused by the difference of equations being solved, and
not by the performance of the boundary conditions. Therefore,
maximum discrepancy does not depend on the relative position
between the vortex and the boundaries and is about the same
for the whole period of vortex passing.

Vertical velocity along the horizontal line passing through
the center of the vortex is plotted at Fig. 10 for the coupled
calculation as well as for single calculations performed with low
Mach number and compressible code, respectively. Plots for
three relative positions of the vortex are shown: when it crosses
the compressible code domain (xvortex = −1.5, Fig. 10(a)),
when it is in the center of the overlap region (xvortex = 4.55, Fig. 10(b))and when it exits the low Mach
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number code domain (xvortex = 10.6, Fig. 10(c)).
When the vortex is far to the left from the outflow boundary of the low Mach number code domain, the

difference between all four solutions is very small (Figs. 10(a) and 10(b)). However, difference between the
single compressible solution and the two coupled solutions is larger than the difference among the coupled
solutions. It is consistent with our earlier observation that solutions are closer when the codes are allowed
to communicate through the feedback mechanism and that inflow boundary conditions for the compressible
code perform better in the coupled case.

However, if we look at the profiles when the vortex is leaving the low Mach number code domain, we see
some oscillations in the coupled solution calculated with the low Mach number code. These oscillations are
due to the influence of the outflow boundary conditions in the low Mach number code on the solution. It is
interesting to note, that performance of a single low Mach number code with convective outflow boundary
conditions for the vortex leaving the domain18 is even worse. Not only oscillations do not reduce in this case,
but also the mean value of the vertical velocity is significantly altered. This shows that the present coupling
procedure provides a good alternative to specifying approximate outflow boundary conditions for the case of
outgoing disturbances. To assess the influence of grid size on the performance of outflow boundary conditions,
another calculation of both coupled and single problems was performed. The number of grid points in the
low Mach number code domain was increased from 128x128 to 256x256 with all other parameters of the
calculation left the same. Vertical velocity profiles for the vortex exiting the low Mach number code domain
are plotted in Fig. 10(d). It can be seen that the magnitude of oscillations is reduced from 10−3 to 10−6 for
the coupled problem, showing the vast improvement of the performance of outflow boundary conditions with
the grid size. In the single code calculation, oscillations are also significantly reduced with grid refinement,
but velocity profile deviates even further from the correct one, showing the fundamental drawback of the
convective outflow boundary conditions in the low Mach number code for the outgoing disturbances.

The reason we did not see any significant oscillations when the vortex was exiting the low Mach number
code domain in subsection III A 2 is that the same number of grid points 128×128 was used for much smaller
low Mach number code domain (1.5 × 4.5 in units of RT as opposed to 16.67 × 15.15 in the present case).
However, when the grid size was reduced from 128×128 to 32×128 in the calculations of subsection III A 2,
some oscillations became noticeable, especially for the cases of inclined and cylindrical domain. These
observations suggest that the minimum grid size requirement exists

Δx/Ld < 0.05 (7)

(where Ld is the disturbance scale) in order for the oscillations in the low Mach number code due to the
outflow boundary conditions to be less than 0.1% of the mean value within the present coupling procedure .

IV. Calculations of jet in a crossflow

A. Literature review

Jet in a crossflow (JCF) can be considered as a technically relevant test problem before studying real
film-cooling flows. The only difference between JCF and film-cooling flows, besides geometry, is that the
temperature and the density of a jet and a crossflow are taken to be the same, while in film-cooling flows
they are different. Though the difference in temperature and density definitely leads to the quantitative
differences between two types of flows, many fundamental features of these flows are similar since they are
caused by misalignment of momentum, rather than by mismatch in temperature and density.

Jets in crossflow are thoroughly investigated and well documented over past years, providing reliable
information for comparison with numerical results. This makes this problem suitable for testing the present
computational method. There are three non-dimensional parameters pertinent to the JCF problem: jet
Reynolds number Ujetd/ν, crossflow Reynolds number U∞δ/ν and blowing ratio defined as R = Ujet/U∞
when ρjet = ρ∞ (here d is the jet diameter and δ is the crossflow boundary layer thickness). Many researchers
have investigated cases of high blowing ratio greater than two.25, 26, 27, 28 However, high blowing ratio is
representative of a different application of jets in crossflow, namely, dilution holes of gas-turbine combustors.
Blowing ratio less than two are used in film cooling applications to keep the injected cold gas close to the
surface. Among experimental investigations of jets in crossflow with small blowing ratio there are experiments
of Gopalan et al.,29 Peterson et al.30, 31 and Gamussi et al.32 Gopalan et al. considered turbulent jets with
flow Reynolds number U∞d/ν = 19000, Peterson et al. were also looking at turbulent jets but emanating
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Figure 10. Vertical velocity along the horizontal line through the center of the vortex.
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from the very short delivery tubes where the plenum configuration was a significant parameter. Gamussi et
al. were looking at laminar jets with very low Reynolds number U∞d/ν = 100.

There also exists many numerical investigations of JCF problem. Among them is Direct Numerical
Simulations of Muppidi et al.33 who looked at the influence of the jet velocity profile and the crossflow
boundary layer thickness on the jet trajectory at two different velocity ratios. One of their velocity ratios
is 1.52, which is characteristics of film-cooling applications. The case I of Muppidi et al. (see Table I of
Ref. 33) was chosen for comparison with the results of the present computational method.

B. Geometry and boundary conditions

Schematical configuration of the JCF problem is shown at the Fig. 11. Jet with diameter d issues perpendic-
ular to the crossflow. Jet Reynolds number Rej = Ujd/ν = 1500, where Uj is the jet bulk velocity; blowing
ratio Uj/U∞ = 1.52. Characteristics of the crossflow are as follows: 80% boundary layer thickness at the
inflow δ80% = 1.32d, which gives crossflow Reynolds number U∞δ80%/ν = 1300. Mach number M∞ = 0.15
is used for the crossflow in the present simulation, which is different from M∞ = 0 in incompressible cal-
culations of Muppidi et al.33 According to the non-dimensional parameters, both jet and crossflow are in
laminar regime.
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Figure 11. Schematics of the jet in crossflow
problem.

Projection of the full computational domain onto x−y plane
is shown in the Fig. 12. It consists of the low Mach number
code domain and the compressible code domain.

1. The low Mach number code domain

Cylindrical domain with diameter d and height 2.2 d is used
for the calculation of the jet by the low Mach number code.
The domain extends 2 d below the crossflow surface, and 0.2 d
above, so that cylindrical region of overlap with compressible
code domain exists with diameter d and height 0.2 d (see the
enlarged view of the region of overlap in the Fig. 12(b).) Grid
of 94× 64× 64 points with uniform distribution in streamwise,
radial and circumferential directions, respectively, is used. This
gives maximum cell size of 0.02 d× 0.008 d× 0.05 d, which sat-
isfies the resolution requirement given by Eq. 7. Jet parabolic
profile is specified at the inflow of the domain 2 d below the
crosfflow surface. No-slip boundary conditions are used at the
pipe walls, which extend from the jet inflow to the crossflow
surface. Boundary conditions described in subsection II C 2
are specified at the ”free” boundaries, corresponding to the boundaries of the overlap region.

2. The compressible code domain

Cartesian domain with dimensions 30 d × 10 d × 3 d is used for the calculation of the crossflow by the
compressible code. Computational grid with 204 × 144 × 51 grid points is used. Grid is clustered at the
region of jet injection as well as at the crossflow boundary layer. Clustering is designed so that the fine grid
approximately follows the jet trajectory before it is turned by the crossflow. Every 4th point in streamwise
direction and every 10th point in vertical direction is shown in the Fig. 12(a), every point is shown at the
enlarged view of Fig. 12(b). Grid is uniform in spanwise direction. Boundary layer profile is specified at
the inflow located about 10 d upstream of the jet. No-slip and isothermal boundary conditions are used
at the bottom wall with density obtained from the continuity equation. Wall temperature is set equal to
T0∞ = (1 + (γ−1)

2 M2)T∞. Values interpolated from the low Mach number code according to the method
described in subsection II C 1 are specified at the place of jet injection. Parameters calculated at the edge of
the boundary layer are set at the top of the computational domain. At the outflow, located 20 d downstream
of the jet injection, parabolized Navier-Stokes equations are solved. In the spanwise direction, periodic
boundary conditions are applied. Since spanwise length of the domain is 3 d, the present configuration
corresponds to the periodic array of film-cooling holes with the pitch of 3 d. This configuration is different
from the case of a free jet calculated by Muppidi et al.33
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Figure 12. Projection of the computational domain onto x − y plane.

Calculations are initialized as follows. First, the steady solution for the crossflow boundary layer in
absence of the jet is obtained. This solution is interpolated into the low Mach number code domain, so that
the region of overlap in the low Mach number code also gets initial conditions corresponding to the crossflow
boundary layer. Then jet is slowly turned on, so that the jet bulk velocity changes in time corresponding to
the formula

Uj = { Umax
j t/tlag if t < tlag

Umax
j otherwise

.

Here t is the computational time, tlag is the time lag equal to 2 d/U∞ and Umax
j is the final bulk

velocity. Without the slow injection, disturbances suddenly supplied to the compressible code would be too
large leading to numerical instability. Solutions are advanced in time with the computational time step
0.01 d/U∞.

C. Simulation results

1. Vortex systems of jet in a crossflow

Basic coherent structures or vortex systems of JCF are described by many authors.27, 25, 32, 26 The primary
feature of jets in crossflow is counter-rotating vortex pair (CRVP). CRVP is created in the near field and
occupies the entire cross-section of the jet, giving it the ”kidney” shape. It carries streamwise-oriented
vorticity. The length scale of CRVP is significantly greater than that of the turbulence, so CRVP is more a
feature of the mean flow than the turbulence.30 CRVP signature is observed far downstream from the jet
injection, where the other vortex systems are diffused. Among other coherent structures is the horseshoe
vortex system (HSV), which occurs upstream of the jet and close to the wall and is formed due to the blockage
of the crossflow by the jet. Ring-like vortices (RLV), or shear-layer vortices with transverse vorticity are
formed on the lateral edges of the jet. Ring-like vortices are unsteady structures, contrary to CRVP and
HSV.

Many researchers who conducted experiments on jets in crossflow varying the blowing ratio noticed that
the evolution of vortical structures is qualitatively different for different blowing ratios.32, 26, 25, 27, 29 Some
of the authors observed the existence of two kinds of regimes: low-R and high-R regime, where R is the
blowing ratio.32, 26, 29 R ∼ 2 ÷ 3 was found as a dividing line between two regimes, most likely depending
on the other non-dimensional parameters describing the flow. One of the significant differences between two
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regimes is the structure of the wake region of the jet right above the wall. For small blowing ratio, the large
zone of reverse flow occurs to the right of the jet injection. It is called the ”dead zone” by Gopalan et al.29

and DSSN vortices (downstream spiral separation node) by Peterson et al.30 DSSN vortices are steady and
spatially stationary. For high blowing ratio, the formation of the ”dead zone” is not observed, but instead
the unsteady vortices of alternating sign are formed by the roll-up of wall boundary layer fluid. These ”wake”
or ”upright” vortices are described in details by Fric and Roshko27 and Kelso et al.25 These structures are
generally not noticed for blowing ratios below two.

Another reported common feature of jets in crossflow at small velocity ratios is the existence of three-
dimensional ”hairpin” vortical structures.13, 26, 32, 29 It is believed that other vortical systems observed in
low-R jets (CRVP, RLV and wall-normal vortices) constitute the base, the top part and the legs of the
”hairpin” structures, respectively. Blanchard et al.26 attributes formation of the ”hairpin” structures to the
elliptical instability of CRVP. Gamussi et al.32 proposes the mechanism of pairing of two counter-rotating
longitudinal vortex tubes to form a single three-dimensional structure. Gopalan et al.29 hypothesizes that
stretching of the jet vortex ring in vertical direction is a formation mechanism for the ”hairpin” structures,
which he calls ”semi-cylindrical vortical layer” in his paper. No ”hairpin”-type structures were reported in
high-R experiments. The reason for the substantial difference in jet vortical structures at small and high
blowing ratios is still the subject of ongoing research.

2. Vorticity dynamics of the present calculations

In this section we try to identify vortical structures described above in the present calculations. Although
the current calculations use spanwise periodic boundary conditions and strict comparison with previous work
on isolated JCF is not possible, it is still useful to make qualitative comparison.

To look at vorticity dynamics of the present calculations, we plot vorticity and streamlines at different
cross-sections. Instantaneous and time-averaged normalized transverse vorticity ωz d/U∞ in x − y plane
taken through the center of the jet z/d = 0 is plotted in Figure 13(a) and Figure 13(b). We call this
plane a center-plane in the present discussion. Only compressible code domain is shown for the sake of
clarity. In the time-averaged field, only two shear layers at the lateral edges of the jet are visible, and
no vortices are present. This confirms the fact that transverse vortices are non-stationary and unsteady
structures. Instantaneous transverse vorticity field is much more complex, showing at least three rows of
transverse vortices. Instantaneous and time-averaged in-plane velocity

√
u2 + v2 and streamlines are plotted

in Figure 14(a) and Figure 14(b). Both compressible and low Mach number code domains are shown. Looking
at both instantaneous and time-averaged streamlines one can notice the node point. It looks like streamlines
are originating from this point and diverging in all directions. The similar node point is shown in Figure
16 of Kelso et al.25 for R=2.2 and in Figure 5(a) of Muppidi et al.33 for the same flow regime as present
calculations. The location of the node is (x/d ∼ 0.83, y/d ∼ 0.27), which is close to (x/d ∼ 1.05, y/d ∼ 0.3)
cited by Muppidi et al.33 It is interesting to note that the windward and leeward sides of the jet eventually
collapse in the vertical center-plane. Instantaneous streamlines show the oscillations of the jet trajectory as
well as formation of unsteady transverse vortices. The enlarged view of time-averaged steamlines is shown
in Figure 15(a). The horseshoe vortex is seen upstream of the jet with clockwise rotation. It is located at
(x/d = −0.82, y/d = 0.11) which is a little bit closer to the jet than x/d = −1.4 found by Muppidi et al.
Hovering vortex is also observed just above the jet exit near the leading edge, consistent with observations of
Muppidi et al.33 and Kelso et al.25 Hovering vortex is only resolved in the low Mach number code domain,
since the size of the grid Δx in the compressible code domain is about five times larger than in the low
Mach number code domain in the region of jet injection. This is because the length of the compressible
code domain is 30 d, thirty times larger than that of the low Mach number code domain. Time-averaged
steamlines in compressible code domain are shown in Figure 15(b) with no hovering vortex. This explains
the fact that hovering vortex in our coupled simulations extends vertically only up to to y/d ∼ 0.2, where
the low Mach number code domain ends. It persists up to y/d ∼ 0.75 in calculations of Muppidi et al.33 One
can notice the intersection of streamlines just above the hovering vortex in Fig. 15(a) since streamlines are
calculated from two different flowfields – one with the hovering vortex, and the other - without it. Muppidi
et al. used incompressible code similar to the present low Mach number code everywhere. Incompressible
code is computationally much less expensive than the fully compressible one, which allowed Muppidi et al.
to keep the resolution higher than in the present calculations. This observation suggests that the resolution
of the compressible code in the region of the jet injection must be increased in order to capture the near-wall
structures.
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Figure 13. Transverse vorticity, ωz d/U∞. x − y plane, z/d = 0. Solid lines – positive vorticity, dashed lines –
negative vorticity.
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Figure 15. Time averaged streamlines. x − y plane, z/d = 0. Enlarged view.

In order to determine the path of the jet fluid, we plot three-dimensional time-averaged streamlines
originating from the various parts of the jet in Figure 16(a). Five streamlines originating at the the center-
plane (–0.1,0,0), (0,0,0), (0.1,0,0), (0.2,0,0) and (0.3,0,0) follow the jet trajectory, which is defined as the
streamline originating from the center of the jet exit by Muppidi et al. However, four streamlines originating
off the center-plane (0,0,–0.5), (0,0,–0.1), (0,0,0.1) and (0,0,0.5) follow much lower trajectory and occupy the
region which might be called the wake of the jet. The off-center-plane jet fluid follows lower trajectory since
it faces stronger cross-flow, which experiences less blockage by the jet. Two streamlines which are coming
from the leading edge of the jet (–0.45,0,–0.005) and (–0.45,0,0.005) bend around the jet together with the
crossflow, since they don’t have enough momentum to resist the crossflow and follow the jet trajectory. If we
look at the x − z projection of the three-dimensional streamlines in Fig. 16(b), we see that the center-plane
jet fluid following the jet trajectory stays in the center-plane. The off-center-plane fluid is gathered at about
z/d ∼ ±1, which are the lateral boundaries of the jet wake. Fluid coming from the leading edge of the jet is
lifted with the crossflow. It almost reaches the center-plane at x/d ∼ 1.5, but later merges with the lateral
boundaries of the wake. The y − z projection of the trajectories (Fig. 16(c)) shows that all the jet fluid
not coming from the immediate vicinity of the jet centerline is gathered into the CRVP, whose vertical and
spanwise extent coincides with the extent of the jet wake.

In order to extract three-dimensional coherent structures, the isosurface of the Laplacian of pressure Pk,k

corresponding to a positive value of 5 is plotted in Figure 17 together with three-dimensional streamlines.
Since the vortex cores are associated with strong vorticity and local pressure minima, it can be shown that
positive isosurfaces of Pk,k can be used to identify coherent structures.13 Coherent structures similar to the
hairpin vortices observed by other authors are visible. It appears that two layers of hairpin vortices are
present – above the wake region and in the wake region. The structures above the wake region have their
top parts linked to the jet trajectory. The lower structures are located just below the upper structures with
their legs penetrating the wake region. Streamwise-oriented vortex tubes are scattered in the region of the
wake corresponding to the streamwise vorticity carried by CRVP. x − z and y − z projection of coherent
structures are shown in Fig. 18(a) and Fig. 18(b), respectively.

To investigate the path of the cross-flow fluid, three-dimensional streamlines originating from the different
parts of the crossflow are plotted in Figure 19(a). A streamline coming from the center of the jet is also
shown to outline the jet trajectory. Several streamlines originating very close to the center-plane plane
(z/d ± 0.01) at different distances from the wall are shown. Streamlines originating at y/d = 2 and higher
in the crossflow merge with the jet. Streamlines coming from y/d = 1.5 go around the jet deflecting only
slightly from the center-plane (see also x−z view in Fig. 19(b)). Trajectories coming through y/d = 1 deflect
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Figure 16. Time-averaged three-dimensional streamlines originating from the jet.
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Figure 18. Isosurface of the Laplacian of pressure Pk,k = 5.
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more and rise right behind the jet into the wake of the jet. Fluid originated from the crossflow boundary
layer at y/d = 0.5 experiences reverse motion behind the jet and then uplift into the jet wake. This reverse
motion behind the jet creates a node point observed in Fig. 14. Also, two streamlines caught up into the
upstream horseshoe vortex are shown. They go wide around the jet and rejoin together at the center-plane
at x/d ∼ 3.5. Streamlines originating at z/d > 0.1 and y/d < 2 circle around the jet, then reverse back and
rise into the wake of the jet, creating DSSN vortices noticed by Peterson et al.30 These streamlines are not
plotted here for the sake of picture clarity.
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Figure 19. Time-averaged three-dimensional streamlines originating from the crossflow.
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Figure 20. Horizontal cross-sections with respect to the coherent structures.

To complete the picture of JCF behavior, we look at instantaneous and time-averaged normalized vertical
vorticity ωy d/U∞ as well as streamlines in the horizontal cross-sections. Location of used horizontal cross-
sections with respect to coherent structures is shown in Fig. 20. Several streamlines originating from the
center and the edges of the jet are also plotted to mark the wake region and the jet trajectory. DSSN
vortices consisting of the crossflow recirculating behind the jet are revealed in Figure 21 in the horizontal
plane y/d ∼ 0.6. Notice that there is almost no difference between instantaneous (Fig. 21(a)) and time-
averaged (Fig. 21(b)) vorticity, showing that DSSN vortices are spatially stationary and steady structures as
was noted by Peterson et al.30 Another node point as well as the recirculating flow is seen in the time-averaged
streamline pattern (Fig. 21(c)). The horizontal plane coming through the wake of the jet y/d ∼ 1.75 is shown
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in Figure 22. Instantaneous ωy of only positive sign is found at z/d ∼ 1 and only negative sign at z/d ∼ −1
(Fig. 22(a)). This persistence in the vorticity sign is also reflected in the time-averaged vorticity pattern,
where two distinct vorticity lobes of the same sign and approximately the same magnitude as instantaneous
values are noticed (see Fig. 22(b)). The node point again exists in the streamline pattern (Fig. 22(c). The
node point corresponds to the lift up of the crossflow fluid from below, which follows almost vertical path.
Intersection of the vertical streamline with the horizontal plane appears as the point of origin for the in-plane
streamline pattern. Therefore, existence of the node point in horizontal cross-section is an indication of the
wake region, where fluid is being tackled from below. The horizontal plane passing through the legs of upper
hairpin structures above the jet wake at y/d ∼ 3.25 is shown in Fig. 23. Vorticity pattern is completely
different here than in the wake region. Vortices of alternating sign are being shed on each side of the center-
line z/d = 0, which is seen in Fig. 23(a) (contours of instantaneous vorticity). Averaged vorticity has mush
smaller value than instantenous vorticity, showing that present vortical structures are of alternating sign and
they mostly cancel each other during averaging (see Fig. 23(b)). Time-averaged streamline pattern does not
have a node point, which agrees with the fact that the horizontal plane y/d ∼ 3.25 is above the wake region.
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Figure 21. Horizontal cross-section, y/d ∼ 0.6. Solid lines – positive vorticity, dashed lines – negative vorticity.
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Figure 22. Horizontal cross-section, y/d ∼ 1.75. Solid lines – positive vorticity, dashed lines – negative vorticity.

It is worth noting that coherent structures are only observed until x/d ∼ 5, after which they suddenly
disappear. The disappearance of coherent structures might be caused by the interactions among the jets
which are separated by 3 d in the spanwise direction in the present computations. To look at the spanwise

20 of 24

American Institute of Aeronautics and Astronautics Paper 2005-0670



x/d

z/
d

1 2 3 4 5

-2

-1

0

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

(a) Instantaneous vertical vorticity,

ωz d/U∞.

x/d

z/
d

1 2 3 4 5

-2

-1

0

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

(b) Time-averaged vertical vortic-

ity, ωz d/U∞.

x/d

z/
d

1 2 3 4 5

-2

-1

0

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(c) Time-averaged in-plane veloc-

ity,
√

u2 + w2, and streamlines.

Figure 23. Horizontal cross-section, y/d ∼ 3.25. Solid lines – positive vorticity, dashed lines – negative vorticity.

development of the jet, temperature contours in the horizontal plane y/d ∼ 1.75 are plotted in the Fig-
ure 24. Although temperature variations are reduced to minimum in the current computations, looking at
temperature field is still a good way of flow visualization since temperature plays the role of a passive scalar
introduced from a jet into crossflow. Oscillations of the lateral boundary of the jet wake are observable. The
lateral boundary reaches the edge of the domain z/d = 1.5 at x/d ∼ 5. Coherent structures characteristic of
a single jet are destroyed after this point by the interactions with the neighboring jets.

X

Y

Z

Figure 17. Isosurface of the Laplacian of
pressure Pk,k = 5. Three-dimensional view.

3. Analysis of the vorticity dynamics

In this section we try to analyze the behavior of the vortical structures and their relations to each other. Jet
fluid originating in the vicinity of the jet centerline follows the highest trajectory and stays in the center-plane.
Two shear layers at the lateral edges of the jet are seen in the contours of instantaneous and time-averaged
transverse vorticity (Fig. 13). When the jet trajectory starts oscillating, the vortices of alternating sign
(with positive vorticity prevailing) are shed into the crossflow. These are the ring-like or shear-layer vortices
observed by other researchers (they are also sometimes called upper and lower structures). These vortices
follow the jet trajectory (a streamline originating from the center of the jet). They form the top parts of the
upper hairpin structures. Plot of instantaneous vertical vorticity through the legs of upper hairpin structures
shown in Fig. 23(a) reveals the alternating signs of the vertical vorticity in the legs. This is in agreement
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with the alternating sign of the transverse vorticity of the top parts, which confirms the fact that both these
vortical tubes are parts of the same hairpin structure. Both transverse and vortical vortices of alternating
sign as well as upper hairpin structures occur at x/d ∼ 2 ÷ 4, which again proves their interdependence.
Basic mechanism suggested in the literature for the development of hairpin structures during jet-crossflow
interactions is the instability of CRVP.26, 32 It should be noted that the upper hairpin structures, linked to
RLV and jet trajectory, can not be generated this way. First, the roll-up of streamwise vortical tubes into
one coherent structure would suggest that the vorticity sign of two successive structures should be the same,
and not alternating, as in the present case. Second, the upper hairpin structures occur much higher than
the wake region, where CRVP is located, which can be seen from Fig. 18 and Fig. 20, and their legs do not
extend all the way to the wake region. Likely, the origin of the upper hairpin structures is the instability of
the jet trajectory.32
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Figure 24. Contours of instantaneous tem-
perature at y/d ∼ 1.75.

Fluid originating from off-center-plane of the jet follows
lower trajectory and constitutes the wake of the jet, which
extends about 1 d in vertical and 2 d in spanwise direction.
Counter-rotating streamwise vorticity from the lateral bound-
aries of the jet is carried to the wake region and reorients in
streamwise direction, creating strong counter-rotating vortex
pair (CRVP), occupying the wake region and giving it ellipti-
cal cross-section. Lower hairpin vortex structures have their
legs in the wake region. The legs are located at z/d ±1, which
is also the position of the lateral boundaries of the wake re-
gion. It suggests that vertical vorticity of the legs is created by
roll-up of streamwise CRVP tubes, occupying the lateral edges
of the jet wake. Moreover, as the analysis of Fig. 22 shows,
the instantaneous vertical vorticity in the wake region has a
constant sign at the either side of the centerline z/d = 0, and
this sign is consistent with CRVP rotation. Therefore, lower
hairpin structures are possibly created by the CRVP instability
mechanism proposed in Ref. 26. Top part of the lower hairpin
structures should, therefore, have negative transverse vorticity.
Looking at Fig. 13(a) one can notice the layer of negative vor-
ticity at 2 < x/d < 3, 2.5 < z/d < 3, exactly where the upper parts of the lower structures should be. One
can notice that lower hairpin structures are wider than the upper structures, having 2 d versus 1.2 d distance
between its legs. Positive transverse vorticity in the center-plane at 1.6 < y/d < 2 is brought from the
windward side of the jet by the jet fluid which is carried around the jet and lifted up into the wake together
with the crossflow fluid. Negative transverse vorticity next to the lee side of the jet occurs because of the
deformation of the lee-side negative shear-layer vorticity.

V. Conclusions

Special parallel interface coupling compressible and low Mach number computational codes is developed
in order to perform numerical investigations of film-cooling of turbine blades. The coupling procedure is
tested on steady and unsteady laminar problems. Two types of tests are performed. First type of tests shows
that in the low Mach number regime the difference between solutions obtained by two codes individually
is very small. Second type of tests confirms that boundary conditions supplied from one code to another
do not contaminate the solutions. Moreover, it is found that boundary conditions work even better in the
presence of an auxiliary code than without it due to the larger amount of information available about the
incoming or outgoing disturbances. Also, it is checked that the solution of the coupled problem does not
drift from the solutions of individual codes.

This methodology is applied to the calculations of jet in a crossflow as a test problem for film-cooling
applications. Laminar jet issuing into laminar crossflow with small velocity ratio characteristic of film-cooling
flows is considered. The vortex systems of the jet-crossflow interaction are described and analyzed. Basic
coherent structures characteristic of low velocity-ratio jets are identified in the present calculations. Analysis
of three-dimensional streamlines suggests that the jet trajectory (streamline originating from the center of
the jet exit) lies higher than the CRVP trajectory. Broad wake region of the jet is created by the fluid

22 of 24

American Institute of Aeronautics and Astronautics Paper 2005-0670



coming from the off-center-plane of the jet and from the windward side. CRVP occupies the wake region.
Crossflow fluid goes around the jet and it is tackled into the wake region of the jet. Reverse flow zone exists
behind the jet, no upright vortices of alternating vorticity sign are observed. Two layers of hairpin structures
are revealed by looking at the positive isosurface of the Laplacian of pressure. Upper structures are linked
to the jet shear-layer vortices and are probably generated by the instability of the jet trajectory proposed
by Gamussi et al.32 Lower structures appear in the wake region and have a vorticity sign consistent with
CRVP. These structures might be generated by the elliptic instability of CRVP described by Blanchard et
al.26 Time-averaged streamline pattern compares well with the calculations of Muppidi et al.33 Location of
the node point shows good agreement with the value obtained by Muppidi et al. Hovering vortex at the left
side of the jet is resolved by the low Mach number code, but not by the compressible code. This suggests
that the resolution of the compressible code must be increased in the region of the jet issuance in order to
capture the near wall structures.
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