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A high-order in space spectral-element methodology for the solution of a strongly coupled 
fluid-structure interaction (FSI) problem is developed. A methodology is based on a 
partitioned solution of incompressible fluid equations on body-fitted grids, and nonlinearly-
elastic solid deformation equations coupled via a fixed-point iteration approach with 
Aitken relaxation. A comprehensive verification strategy of the developed methodology 
is presented, including h-, p- and temporal refinement studies. An expected order of 
convergence is demonstrated first separately for the corresponding fluid and solid solvers, 
followed by a self-convergence study on a coupled FSI problem (self-convergence refers to 
a convergence to a reference solution obtained with the same solver at higher resolution). 
To this end, a new three-dimensional fluid-structure interaction benchmark is proposed for 
a verification of the FSI codes, which consists of a fluid flow in a channel with one rigid 
and one flexible wall. It is shown that, due to a consistent problem formulation, including 
initial and boundary conditions, a high-order spatial convergence on a fully coupled FSI 
problem can be demonstrated. Finally, a developed framework is applied successfully to a 
Direct Numerical Simulation of a turbulent flow in a channel interacting with a compliant 
wall, where the fluid-structure interface is fully resolved.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A situation where a tight interaction occurs between a fluid flow and a surrounding structure, the so called fluid-
structure interaction (FSI) problem, is prevalent in many engineering and biological applications. One famous example of 
a destabilizing effect of the fluid-structure interaction is the failure of the Tacoma Narrows bridge [1], while many other 
examples can be found in aerospace (flutter of airplane wings [2]), turbomachinery (turbine blade vibrations [3]) and nuclear 
(fretting in nuclear reactors [4]) engineering. FSI effects can also be beneficial; for example, compliant surfaces can delay 
laminar-to-turbulent transition [5,6], and, perhaps, reduce skin friction drag [7].

The problem of fluid-structure interaction is inevitably complex, featuring nonlinear interactions, tightly coupled multi-
physical phenomena, and potential instabilities [8]. Accurate numerical solution of the FSI problem, even in relatively simple 
situations, is thus increasingly challenging. In many of the applications, the flow that interacts with a deformable surface 
is in a turbulent regime, which makes the computation of the FSI problem even more complicated, due to a wide range 
length and time scales that need to be resolved. High-order methods, such as spectral-element methods [9] and discontinu-
ous Galerkin methods [10], have proven to be accurate and robust in application to scale-resolving simulations of turbulent 

* Corresponding author.
E-mail addresses: yiqinxu@asu.edu (Y. Xu), ypeet@asu.edu (Y.T. Peet).
https://doi.org/10.1016/j.jcpx.2021.100084
2590-0552/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcpx.2021.100084
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcpx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcpx.2021.100084&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:yiqinxu@asu.edu
mailto:ypeet@asu.edu
https://doi.org/10.1016/j.jcpx.2021.100084
http://creativecommons.org/licenses/by/4.0/


Y. Xu and Y.T. Peet Journal of Computational Physics: X 10 (2021) 100084
flows [11]. Computational methodologies that achieve high rates of convergence in the presence of fluid-structure interac-
tions would thus be increasingly useful to the engineering and physical communities.

There are only a few examples in the literature that are concerned with a numerical discretization of the FSI problem 
with high-order methods. The authors of [12,13] employ spectral-element methods in the FSI problem discretization, Froehle 
& Persson [14] present an application of discontinuous Galerkin (DG) methods to a solution of the fluid-structure interaction 
problem involving compressible flows, Sheldon et al. [15] use hybridizable DG methods in incompressible FSI (although only 
first- and second-order elements were employed in the fully coupled FSI test cases), while Verkaik et al. [16] present an 
overlapping domain approach that couples low-order finite element methods in the vicinity of a deformable structure, with 
high-order spectral elements in a background mesh. One should also mention the work of [17] and references therein who 
use non-uniform rational B-spline isogeometric methods for fluid-structure interaction. While these developments have 
appeared, a strict verification of high-order convergence in the presence of complex multi-physics interactions remains a 
challenging task. Most of the researchers have resorted to a verification of the component solutions separately, such as only 
fluid or only solid. Thus, Ref. [18] presents h/p-convergence of an elastostatics solid solver with spectral elements, while [19]
shows both h/p- and temporal convergence of the corresponding elastodynamics solver. Several groups demonstrate h/p-
and/or temporal convergence of their fluid components of the FSI solvers on stationary ([20]) and deforming ([14,21,22]) 
domains, [15] presents a verification of h/p-convergence for both the fluid and the structural solvers separately using the 
method of manufactured solutions (MMS), while [16] does not show any convergence studies.

The current paper presents a recently developed high-order in space computational methodology for a solution of the 
fluid-structure interaction problem, together with a comprehensive verification strategy demonstrating the high-order spatial 
accuracy and up to a second-order temporal accuracy of the approach. The methodology is based on a spectral-element 
implementation [23] of both the Navier-Stokes, and the solid mechanics equations, where a hyperelastic St. Venant-Kirchhoff 
material model is employed for the solid [24,25]. The coupling between the fluid and solid components is performed in 
a partitioned manner, whereby a fixed point iteration [26] with Aitken relaxation [27] is employed to achieve a strong 
fluid-solid coupling. We admit that the fixed-point iteration with Aitken relaxation is not the state-of-the art method, and 
recent research has been devoted to a development of stable coupling methods with reduced amount of iterations [28–32]. 
However, the focus of this paper is on verification of the global h/p-spectral convergence of the methodology, while future 
work will be devoted to an acceleration of the FSI iterations.

A typical verification strategy of the FSI algorithms, apart from the component testing, is a simulation of a suite of 
accepted benchmark problems, one of which is a two-dimensional test case proposed by Turek & Hron [33], where a 
flow-induced vibration of a flexible beam attached to a rigid circular cylinder is studied numerically. Another variant of 
a similar test problem exists where a circular cylinder is replaced by a square cylinder [34]. In the absence of reliable 
experimental benchmarks for a fluid-structure interaction problem, the two aforementioned test cases have essentially taken 
a role of “validation experiments” in the FSI computational community, albeit the efforts to establish reliable experimental 
benchmarks for the FSI problems are underway [35]. While simulations on different levels of grid refinement are often 
performed with these two benchmarks [15,16,33], the verification of convergence rates is not demonstrated. Formaggia et 
al. [36], as well as Bathe & Ledezma [37], presented several three-dimensional computational test cases for the FSI problems, 
but, again, without demonstrating the formal rates of convergence. Fernández et al. [38] used self-convergence studies with 
a finite-element method in a two-dimensional pressure-driven pipe flow with a flexible wall, while Banks et al. [32] used 
both a method of manufactured solutions, as well as the traveling wave exact solutions of the 2D model FSI problems 
for the acoustic and linearly elastic solids to test their finite difference FSI code. Both studies were able to demonstrate a 
globally second-order spatial convergence on model FSI problems. A high-order convergence of the FSI methodologies on 
fully coupled FSI problems has not been demonstrated yet.

The current paper presents a new three-dimensional computational benchmark, on which the convergence properties of 
the FSI algorithms can be studied. The benchmark is inspired by a problem of the interaction of compliant surfaces with 
the fluid flow [39–41], and consists of a three-dimensional channel with one rigid and one flexible wall. We demonstrate 
the expected h/p-spatial convergence and the second order temporal convergence of the developed spectral-element FSI 
solver using this problem. Since the reference results are obtained with a high-order code on a well-resolved mesh, these 
data can be used by the computational community to test the convergence rate of their FSI codes, both low- and high-order 
accurate. While the current fixed-point iteration fluid-solid coupling algorithm is fairly standard, it is nonetheless widely 
used in many commercial and research FSI codes, as the more efficient alternatives are hard to implement [42]. With a 
fixed-point iteration algorithm, the computational efficiency can always be achieved by increasing the solver tolerances. In 
this paper, we demonstrate the effect of increasing the tolerances in both component and the coupling algorithms on the 
global computational errors. Additionally, we provide recommendations for acceptable tolerances with respect to their effect 
on the global errors. While convergence of the iterative algorithms in the FSI literature in terms of the iteration count has 
been studied extensively [13,26,30], the effect of these different strategies on errors has not been highlighted. The current 
study serves to fill this gap. Finally, we demonstrate the application of the developed high-order methodology to a Direct 
Numerical Simulation of a three-dimensional turbulent channel flow interacting with a hyperelastic solid wall, which shows 
the robustness of the methodology in the presence of the multiscale fluid-solid interactions.

The paper is organized as follows. Section 2 presents the numerical methodology for the solid and the fluid compo-
nents, and their coupling. Section 3 demonstrates the h/p- and temporal convergence of the solid and fluid components 
separately. Section 4 verifies the performance of the coupled FSI solver on the traditional two-dimensional [33] and three-
2
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dimensional [36,38] benchmark problems by comparing with the results of the other codes. Section 5 presents the new 
three-dimensional FSI benchmark, verifies a global h/p-convergence and a second-order temporal convergence of the devel-
oped FSI methodology using self-convergence tests, and presents the solver tolerance study. Section 6 applies the developed 
methodology to a turbulent fluid-structure interaction problem, while Section 7 draws conclusions.

2. Numerical method

The simulation domain �(t) ⊂ R3 is decomposed into two separate nonoverlapping conforming subdomains �s(t) and 
� f (t), representing solid and fluid components, with their respective Dirichlet and Neumann boundaries ∂�sD (t), ∂�sN (t)
and ∂� f D (t), ∂� f N (t). Additionally, common boundary � f si(t) = �s(t) ∩ � f (t) denotes the interface between the solid and 
the fluid domains with a full connectivity. The remainder of this section presents a mathematical formulation a numerical 
discretization of the solid and fluid equations, and their coupling.

2.1. Governing equations

2.1.1. Nonlinear structural mechanics
A nonlinear elasticity formulation allows for finite-size deformations, as opposed to a linear elasticity approach, con-

sidered, e.g., in [43]. Nonlinearity can be introduced from a geometry, material properties, kinematics and force [24,25]. 
Nonlinear solid equations in a strong form are written as

ρsd̈ = ∇ · σs + ρsf in �s(t), (1)

with the initial conditions

d(x, t = 0) = d0(x) in �s(0),

ḋ(x, t = 0) = v0(x) in �s(0),

d̈(x, t = 0) = a0(x) in �s(0),

(2)

and boundary conditions

d(x, t) = dD(x, t) on ∂�sD (t), (3)

σs(x, t) · n = TN(x, t) on ∂�sN (t) ∪ � f si(t), (4)

where ḋ, d̈ denote the first and the second partial temporal derivatives of the displacement d = {dx, dy, dz}, σ is the Cauchy 
stress tensor, and T = {Tx, T y, T z} is the surface traction. To solve the equations (1)–(4) in a spectral-element method, a 
weak form of Eq. (1) in a total Lagrangian formulation is stated as: find d ∈ H1

0(�s), such that ∀w ∈H1
0(�s),∫

�s(0)

w · ρs(0)d̈ d� +
∫

�s(0)

∇0w : P d� −
∫

�s(0)

w · ρs(0)f d� −
∫

�s(0)

w · T̂ d� = 0. (5)

Here, H1
0(�s) denotes the Sobolev space of vector functions, vanishing to zero on a Dirichlet boundary, the solid domain 

boundary surface is defined as �s(0) = ∂�sN (0) ∪ ∂�sD (0) ∪ � f si(0), ρs(0) is the initial solid density, which, in general, is 
time-dependent, ∇0 refers to a gradient operator taken with respect to an initial configuration, T̂ is the equivalent traction 
on the reference surface from the Nanson’s formula [17], P = FS is the first Piola-Kirchhoff stress, which could be expressed 
by the deformation gradient F and the second Piola-Kirchhoff stress S. The terms in Eq. (5) are transferred to the initial 
domain �s(0) using a large deformation theory [24,44] through a valid mapping from an undeformed material point X to a 
deformed point x. Such deformation could be described by a deformation gradient as

F(d) = ∂x

∂X
= I + ∂d

∂X
= I + ∇0d. (6)

Furthermore, the Green-Lagrange strain tensor matched with the engineering strain is defined as E = 1
2 (FT F − I), and the 

determinant of the deformation gradient is J = |F|, which indicates the volume change during the deformation.
St. Venant-Kirchhoff material [24,25] is used in this paper, which is an extension of the linear elasticity model that 

considers large deformations,

S = D : E, (7)

where D is a fourth-order stiffness tensor. For isotropic materials considered in the current paper, the stiffness tensor has 
only two independent material parameters λs and μs , and is written as

D = λsI ⊗ I + 2μsI4, (8)
3
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where λs is the first Lame’s coefficient, μs is the second Lame’s coefficient (or shear modulus), I is the second-order identity 
tensor, ⊗ is the symbol for the tensor product, and I4 is the symmetric fourth-order identity tensor [24]. Under the property 
of Eq. (8), Eq. (7) simplifies to

S = λs tr(E)I + 2μsE. (9)

2.1.2. Navier-Stokes ALE formulation
The fluid equations are solved in the Arbitrary Lagrangian Eulerian (ALE) formulation. A strong form of the incompressible 

Navier-Stokes equations in the ALE formulation can be written as

ρ f (
∂u

∂t

∣∣∣∣
x̂
+ (u − w) · ∇u − f) + ∇p − μ�u = 0 in � f (t), (10)

∇ · u = 0 in � f (t), (11)

with the initial condition

u(x, t = 0) = u0(x) in � f (0), (12)

and boundary conditions

u(x, t) = uD(x, t) on ∂� f D (t) ∪ � f si(t), (13)

∇u(x, t) · n = 0 on ∂� f N (t), (14)

where ρ f , u = {ux, u y, uz}, f = { fx, f y, f z}, p, μ and w = {wx, w y, wz} are the fluid density, velocity, external force, pressure, 
dynamic viscosity and the mesh velocity, respectively, while n is the outward-pointing unit vector normal to the surface. 
With the ALE formulation, the current configuration � f (t) is defined through an ALE map, At ,

At : � f (0) ∈ Rd → � f (t) ∈ Rd, x (x̂, t) = At(x̂), (15)

where d is the number of dimensions, which maps a reference configuration � f (0) to a current configuration � f (t), while 

associating the point x̂ ∈ � f (0) with the point x(x̂, t) ∈ � f (t) [21,45,46]. The ALE derivative in Eq. (10), ∂
∂ t

∣∣∣∣
x̂

, denotes the 

derivative with respect to time in the reference fluid domain � f (0). The mesh velocity ŵ(x̂, t) with respect to a reference 
domain is defined as

ŵ(x̂, t) = ∂x

∂t

∣∣∣∣
x̂
. (16)

In the current formulation, the mesh velocity field ŵ(x̂, t) is obtained at each time instance t via a solution of a steady 
linear elastic equation [9,43]

div (λe tr(ε) I + 2μe ε) = 0, (17)

where

ε = 1

2

[
∇ŵ + ∇(ŵ)T

]
, (18)

λe , μe are user-defined elastic parameters, satisfying boundary conditions ŵ(x̂, t) = ŵint(x̂, t) on the moving mesh boundary, 
� f si(0), and ŵ(x̂, t) = 0 on the other domain boundaries, such as inflow ∂� f D (0) and outflow ∂� f N (0). The mesh velocity 
ŵ(x̂, t) can be transformed into the current domain � f (t) with the help of an inverse ALE map as

w(x, t) = ŵ (A−1
t (x), t) in � f (t). (19)

Note that, due to a no-slip condition at the solid boundaries of the fluid domain, including the fluid-structure interface, 
the mesh velocity w(x, t) at the FSI interface � f si(t) also represents the boundary condition for the fluid velocity in Eq. (13),

uD(x, t) = w(x, t), x ∈ � f si(t). (20)

In the present work, a conservative formulation of the weak form of Eq. (10) and Eq. (11) is considered, which is stated 
as: find u ∈ H1(� f ) and p ∈L2(� f ) such that ∀v ∈ H1(� f ) and ∀q ∈L2(� f ),
0 0 0 0

4
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∂

∂t

∫
� f (t)

v · ρ f u d� +
∫

� f (t)

v · ρ f [u · ∇u − ∇ · (u w) − f] d�

−
∫

� f (t)

∇v · p d� +
∫

� f (t)

μ∇v : ∇u d� −
∫

� f (t)

v · (μ∇u − p)n d� = 0,

(21)

∫
� f (t)

q · ∇u d� = 0. (22)

Here H1
0(� f ) denotes the Sobolev space of vector functions, vanishing to zero on a Dirichlet boundary, and L2

0(� f ) denotes 
the Hilbert space of vector functions that are square-integrable and have a zero mean value over the essential (pressure) 
boundary. � f (t) and � f (t) = ∂� f D (t) ∪ ∂� f N (t) ∪ � f si(t) refer to a fluid current integration domain and its boundary 
surface, respectively. Further details, including the derivation of the conservative ALE formulation, can be found, for example, 
in [45,46].

2.1.3. Fluid-structure interaction
In a fluid-structure interaction problem, the solution of the solid and fluid equations is coupled through appropriate 

boundary conditions, which can be stated as

uD(x, t) = ḋ(x, t) on � f si(t), (23)

σs(x, t) · (−ns) = σ f (x, t) · n f on � f si(t). (24)

Here, σs is the Cauchy stress tensor of the solid, see Eq. (1), Eq. (4), and σ f is the Cauchy stress tensor of the fluid defined 
as

σ f (x, t) = −pI + μ
(
∇u + (∇u)T

)
, (25)

and the outward unit surface normal vectors ns and n f for the solid and the fluid domains defined on the � f si(t) boundary 
are pointing in opposite directions. The first boundary condition, Eq. (23), represents the kinematic constraint that the 
velocity on the interface � f si(t) should be same in the fluid and the solid domains, and the second boundary condition, 
Eq. (24), reflects the continuity of the traction force across the interface.

Fluid-structure coupling in a partitioned manner is accomplished via a Dirichlet-Neumann approach, where the fluid 
uses velocity provided by the solid solution at the FSI interface as the Dirichlet boundary conditions, and the solid employs 
the traction supplied by the fluid as the Neumann boundary conditions, as reflected in Eq. (4), Eq. (13).

2.2. Temporal discretization

The current section describes the temporal discretization of the ALE fluid equations and the nonlinear solid mechanics 
equations. Both solid and fluid domains are discretized with the second-order methods. For the solid equations which 
contain the second order temporal derivative, a Newmark β-method with a constant average acceleration is employed [47], 
which is a second-order accurate implicit method commonly used for the time discretization of the structural dynamics 
equations [44]. For the fluid equations, a second-order accurate backward-differentiation scheme (BDF2) is employed [9,45]. 
The rest of this section provides the details of the two discretization schemes and the iteration procedures.

2.2.1. Solid temporal discretization
A. Newmark β method. For the solid temporal discretization, we employ the Newmark β scheme [47] with the parameters 
(β, γ ) = (0.25, 0.5), also known as a constant average acceleration method, wherein the velocity and acceleration at time 
step n + 1 can be expressed through the unknown displacements dn+1 as

ḋn+1 = 2

δt
(dn+1 − dn) − ḋn,

d̈n+1 = 4

δt2
(dn+1 − dn) − 4

δt
ḋn − d̈n,

(26)

where δt is the time step. For (β, γ ) = (0.25, 0.5), the Newmark scheme is second-order accurate and unconditionally stable 
under linear analysis [47]. As in [19], we have found this scheme to be stable with spectral-element discretization for the 
nonlinear structural dynamics problems simulated. When these expressions are substituted into the structural dynamics 
equation, Eq. (5), it becomes a nonlinear equation for displacement dn+1, which can be solved iteratively.
5
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B. Newton-Raphson iterative procedure. To solve the nonlinear structural dynamics equation for displacements dn+1 with 
the implicit Newmark method, a Newton-Raphson iterative procedure [17,44,48] will be used. Instead of solving Eq. (5)
directly, we solve for the increment of the displacement δdn+1

i+1 at each iteration i + 1 at a time step n + 1, i.e. we define 
δdn+1

i+1 = dn+1
i+1 − dn+1

i , and use linearization of Eq. (5) as

∂ N

∂ d

∣∣∣∣
dn+1

i

δdn+1
i+1 = −N(dn+1

i ), (27)

where N(dn+1
i ) is the left-hand side of Eq. (5) evaluated at the previously known displacement dn+1

i , and the Jacobian 
matrix (∂ N/∂ d)|dn+1

i
is evaluated by solving the equation [24]

∂ N

∂ d

∣∣∣∣
dn+1

i

δdn+1
i+1 = ∂

∂ε
N(dn+1

i + εδdn+1
i+1 )

∣∣∣∣
ε=0

. (28)

Setting the initial value dn+1
0 to be equal to a converged value of the displacement dn from the previous time step, and 

after a linearization using Eq. (27) and Eq. (28), a nonlinear structural dynamic equation, Eq. (5), can then be solved as

(
4M

δt2
+ K) δdn+1

i+1 =
∫

�s(0)

w · ρs(0)f
n+1 d� +

∫
�s(0)

w · T̂n+1 d�

−
∫

�s(0)

Sn+1
i : Ēn+1

i d� − M[ 4

δt2
(dn+1

i − dn) + 4

δt
ḋn − d̈n],

(29)

with the mass matrix M, stiffness matrix K, and the other corresponding matrices defined as

Mδdn+1
i+1 =

∫
�s(0)

w · ρs(0)δdn+1
i+1 d�,

Kδdn+1
i+1 =

∫
�s(0)

(δSn+1
i+1 : Ēn+1

i + Sn+1
i : δĒn+1

i+1 ) d�,

Sn+1
i = D : En+1

i ,

Ēn+1
i = 1

2
[∇0wT F(dn+1

i ) + (∇0wT F(dn+1
i ))T ],

δSn+1
i+1 = D : δE = D : 1

2
[∇0(δdn+1

i )T F(dn+1
i ) + (∇0(δdn+1

i )T F(dn+1
i ))T ],

δĒn+1
i+1 = 1

2
[∇0wT ∇0δdn+1

i+1 + (∇0wT ∇0δdn+1
i+1 )T ].

(30)

Once the increment of the displacement δdn+1
i+1 is obtained via solving Eq. (29) with the preconditioned conjugate gradient 

method (PCG), where the inverse of a spectral-element mass matrix is used as a preconditioner (mass matrix is diagonal in 
spectral elements, see Sec. 2.3), the solid displacement field can be updated as dn+1

i+1 = dn+1
i + δdn+1

i+1 . The iteration process is 
terminated when κs, i+1 = ‖δdn+1

i+1 ‖2/‖dn+1
i ‖2 reaches a prescribed tolerance value κs . The value of the solid solver tolerance 

κs = 10−12 is used in all the test cases in the current paper. Solid equations manifest good convergence properties, which 
permits such a tight tolerance to be set without affecting the overall solver cost. Note that the unknown surface traction 
T̂n+1 at the FSI interface is provided by the solution of the fluid equations, and is updated implicitly during the partitioned 
fixed-point iteration coupling approach as discussed later.

2.2.2. Fluid temporal discretization
A. Backward-differentiation scheme. A backward-differentiation scheme of the second-order accuracy (BDF2) is used for the 
temporal discretization of the fluid equations. Applying BDF2 to Eq. (21) and Eq. (22) while denoting the current unknown 
time step with the superscript n + 1 and the time step size as δt , transforms the fluid equations into the following semi-
discrete form
6
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3

2δt

∫
� f (tn+1)

v · ρ f un+1 d� − 2

δt

∫
� f (tn)

v · ρ f un d� + 1

2δt

∫
� f (tn−1)

v · ρ f un−1 d�

= −
∫

� f (tn+1)

μ∇v : ∇un+1 d� −
∫

� f (tn+1)

v · ρ f (un+1 · ∇un+1) d� +
∫

� f (tn+1)

v · ρ f fn+1 d�+

∫
� f (tn+1)

∇v · pn+1 d� +
∫

� f (tn+1)

v · (μ∇un+1 − pn+1)n d� +
∫

� f (tn+1)

v · ρ f [∇ · (un+1wn+1)] d�,

(31)

∫
� f (tn+1)

q · ∇un+1 d� = 0. (32)

B. ALE geometry update. Note that in this, implicit, formulation, the Eq. (31) and Eq. (32) are solved in the current, updated 
configuration � f (tn+1), associated with the current ALE map An+1

t (x̂). Since the ALE map is closely linked to the mesh 
velocity via Eq. (16), a temporal discretization of the evolution equation, Eq. (16), would define the temporal discretization 
of the ALE map, which can, in principle, be decoupled from the temporal discretization of the governing fluid equations, 
Eq. (31) and Eq. (32). One obvious choice for a temporal discretization of Eq. (16) would be to use the BDF scheme of the 
same order as the discretization of the governing fluid equations, i.e. BDF2, as is done, for example, in stand-alone ALE 
developments [21,49]. However, in a fluid-structure interaction problem, the fluid geometry update should match the solid 
geometry update, otherwise there would be a discontinuity in the interface position which is undesirable. With the current 
constant average acceleration Newmark method for the solid discretization, it is seen from Eq. (26) that the solid geometry 
update

dn+1 = dn + δt

2
(ḋn+1 + ḋn) (33)

is essentially equivalent to a semi-implicit trapezoidal (or Crank-Nicholson) scheme. To match this update, we have explored 
two possibilities for the ALE map discretization:

1. First-order implicit Euler (IE) update: IE-ALE scheme,

An+1
t (x̂) = An

t (x̂) + ŵn+1(x̂) δ t. (34)

To match the solid and fluid displacement at the FSI boundary, the FSI interface velocity for the time interval [tn, tn+1]
is defined as

ŵn+1
int (x̂) = 1

2

[
ḋn+1(x̂) + ḋn(x̂)

]
∈ � f si(0), (35)

which is equivalent to approximating the integral ŵn+1
int (x̂) δ t = ∫ tn+1

tn ḋ(x̂, t) dt, x̂ ∈ � f si(0), with the trapezoidal rule.
2. Second-order semi-implicit (Crank-Nicholson) update: CN-ALE scheme,

An+1
t (x̂) = An

t (x̂) + δt

2

[
ŵn+1(x̂) + ŵn(x̂)

]
, (36)

where the mesh velocity at the interface ŵn+1
int (x̂) is set equal to the corresponding structure velocity at a time step 

tn+1 from the solid solver:

ŵn+1
int (x̂) = ḋn+1(x̂), x̂ ∈ � f si(0). (37)

In both methods, after the FSI interface velocity conditions are set up by Eq. (35) or Eq. (37), the ALE mesh velocity 
ŵn+1(x̂) in the entire domain is obtained via a solution of an elastic equation, Eq. (17), with the boundary conditions 
ŵn+1(x̂) = ŵn+1

int (x̂) on � f si (0). Upon updating the ALE configuration via Eq. (34) or Eq. (36), the mesh velocity in the 
current configuration � f (tn+1) used in Eq. (31) is obtained as

wn+1(x) = ŵn+1 ◦ (A−1
t (x))n+1. (38)

C. Geometric conservation law. Note that the BDF2 scheme applied to a conservative formulation of the ALE equa-
tions, Eq. (31), does not satisfy the geometric conservation law (GCL) [46], which means that it can not reproduce a constant 
solution exactly. The role of GCL with respect to the accuracy and stability of numerical schemes on moving grids was in-
vestigated extensively in, e.g. [46,50–52]. It was shown in [46,52] that, in general, a satisfaction of the GCL is neither a 
7
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necessary nor sufficient condition for either accuracy or stability. However, in some situations, depending on a particular 
numerical scheme, GCL might be required to ensure certain numerical properties. For example, as shown in [46], a BDF2 
scheme that does not satisfy the GCL law can achieve only first order time-accuracy if the ALE mesh geometry is updated 
linearly in time (as with Eq. (34)). It is, however, fairly straightforward to modify the BDF2 scheme given by Eqs. (31)–(32), 
so that the Geometric Conservation Law is satisfied [46,53], as

3

2δt

∫
� f (tn+1)

v · ρ f un+1 d� − 2

δt

∫
� f (tn)

v · ρ f un d� + 1

2δt

∫
� f (tn−1)

v · ρ f un−1 d�

= −
∫

� f (tn+1)

μ∇v : ∇un+1 d� −
∫

� f (tn+1)

v · ρ f (un+1 · ∇un+1) d� +
∫

� f (tn+1)

v · ρ f fn+1 d�+

∫
� f (tn+1)

∇v · pn+1 d� +
∫

� f (tn+1)

v · (μ∇un+1 − pn+1)n d� + 3

2

∫
� f (tn+1)

v · ρ f [∇ · (un+1wn+1)] d�−

1

2

∫
� f (tn)

v · ρ f [∇ · (un+1wn)] d�,

(39)

∫
� f (tn+1)

q · ∇un+1 d� = 0. (40)

It was shown in [46] that, for a model linear advection-diffusion equation discretized with finite-element methods, the GCL-
satisfying BDF2 scheme in the form of Eq. (39) was able to attain a second-order temporal accuracy even with the linear 
in time ALE mesh update. Note that, with the ALE mesh interpolation scheme of order higher than one, satisfaction of the 
GCL is, in general, not necessary for achieving a global second-order temporal accuracy on moving meshes, as was the case, 
for example, in stand-alone ALE formulations (no FSI) [21,49], where the ALE geometry was updated with the BDF scheme 
of the same order as used for the discretization of the Navier-Stokes equations. While the behavior of the BDF2 schemes 
with the Crank-Nicholson (CN) type geometry update (see Eq. (36)) was not previously analyzed, the current numerical 
experiments show that, as expected, the GCL law is not necessary with the CN mesh update for achieving a global second-
order time accuracy on moving grids on an example of a convecting eddy viscous flow solution, see Sec. 3.2. Consequently, 
the GCL BDF2 scheme, Eq. (39), is used with the first-order IE-ALE geometry update, and the no-GCL BDF2 scheme, Eq. (31), 
is used with the second-order CN-ALE geometry update.

D. Sub-iteration method. This section deals with the treatment of the non-linear convective term 
∫
� f (tn+1)

v · ρ f (un+1 ·
∇un+1) d� (also, mesh velocity term 

∫
� f (tn+1)

v · ρ f [∇ · (un+1wn+1)] d� with moving domains) in Eq. (31), Eq. (39). One 
approach would be to treat this term (terms) explicitly via an extrapolation from the previous time steps, as is done, e.g., 
in [45,49,54]. This method produces stable and accurate results on stationary domains, and on moving domains where the 
movement of the domain boundary at the next time instance can be well predicted by extrapolation, as is the case, for 
example, with prescribed domain motions parameterized by a known function of time [45,49]. Our previous work [48] has 
shown, however, that with domain motions that can not be well predicted by extrapolation, such as, for example, with sud-
den, or impulsive, motions, the explicit approach fails to reproduce a stabilized pressure field in a short enough time. While 
the pressure recovery would eventually follow after a certain time lag, in a fully coupled FSI loop, a short-term disturbance 
of the pressure field would get amplified via an FSI iteration and lead to numerical instabilities. To avoid this situation, we 
follow, after [20], an implicit approach for the treatment of the non-linear convective term in the BDF2 formulation, in the 
form of sub-iterations.

In [20,48], sub-iterations are described in a strong form. Here, we develop a more appropriate mathematical formulation 
by introducing a sub-iteration approach in a weak form, since this is precisely the form that is being solved numerically in 
the weighted-residual based methods, such as a spectral-element method [9]. Following a similar approach as described in 
Sec. 2.2.1 in regards to an iterative solution of the nonlinear solid dynamics equations, both no-GCL and CGL ALE formula-
tions given by Eqs. (31)–(32) and Eqs. (39)–(40), respectively, can be written in a form,

NM(un+1, pn+1) = 0,

NC(un+1) = 0,
(41)

where NM is a non-linear variational functional corresponding to the momentum equations, and NC is the non-linear 
functional for the continuity equation, defined as the difference between the left-hand side and the right-hand side 
of Eq. (31), Eq. (39) for NM , and as the left-hand side of Eq. (32), Eq. (40) for NC . Note that the continuity equation does not 
contain pressure, so that the functional NC in Eq. (41) is independent of the pressure term.
8
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As in Sec. 2.2.1, introducing iterative corrections to the independent problem variables at each time step n + 1 and each 
iteration i + 1

un+1
i+1 = un+1

i + δun+1
i+1 ,

pn+1
i+1 = pn+1

i + δpn+1
i+1 ,

(42)

and linearizing the system given by Eq. (41) around the previous known values (un+1
i , pn+1

i ), a solution of the following 
linearized equations in a Newton-Raphson form is being sought,

∂ NM

∂ u

∣∣∣∣
un+1

i

δun+1
i+1 + ∂ NM

∂ p

∣∣∣∣
pn+1

i

δpn+1
i+1 = −NM(un+1

i , pn+1
i ),

∂ NC

∂ u

∣∣∣∣
un+1

i

δun+1
i+1 = −NC(un+1

i ).

(43)

For evaluation of the Jacobian matrices, we omit nonlinear terms from the calculation of the Jacobians but keep them 
in the right-hand side of the iterative equation, Eq. (43), since Jacobians are not required to be exact with the implicit 
iterations procedure [20,48]. The linearized system, however, contains the implicit pressure-velocity relationship inherent to 
the incompressible Navier-Stokes equations system [9]:

[
F G
D 0

][
δ un+1

i+1
δpn+1

i+1

]
=

[−NM
n+1
i

−NC
n+1
i

]
, (44)

where

F δun+1
i+1 = 3

2δt

∫
� f (tn+1)

v · ρ f δun+1
i+1 d� +

∫
� f (tn+1)

μ∇v : ∇δun+1
i+1 d�,

G δpn+1
i+1 = −

∫
� f (tn+1)

∇v · δpn+1
i+1 d�,

D δun+1
i+1 = −

∫
� f (tn+1)

q · ∇δun+1
i+1 d�,

−NM
n+1
i = 2

δt

∫
� f (tn)

v · ρ f un d� − 1

2δt

∫
� f (tn−1)

v · ρ f un−1 d� −
∫

� f (tn+1)

v · ρ f (un+1
i · ∇un+1

i ) d�

+
∫

� f (tn+1)

v · ρ f fn+1 d� +
∫

� f (tn+1)

∇v · pn+1
i d� +

∫
� f (tn+1)

v · (μ∇un+1 − pn+1)n d� + gw(un+1
i , tn+1

i ),

−NC
n+1
i = 0,

(45)

and the mesh velocity term gw(un+1
i , tn+1

i ) is equal to

gw(un+1
i , tn+1

i ) =
⎧⎨
⎩

3
2

∫
� f (tn+1)

v · ρ f [∇ · (un+1
i wn+1)] d� − 1

2

∫
� f (tn)

v · ρ f [∇ · (un+1
i wn)] d�, IE update with GCL∫

� f (tn+1)
v · ρ f [∇ · (un+1

i wn+1)] d�, IE or CN update with no GCL.

(46)

To solve the system of Eq. (44), following [9,55], we use inexact block LU factorization procedure as[
F G
D 0

]
≈

[
F 0
D −DQ1 G

][
I Q2 G
0 I

]
, (47)

where Q1, Q2 serve to approximate an inverse of the matrix F−1, and in the current method are chosen as

Q1 = Q2 = δ t
M−1, (48)
β0

9
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while other choices are possible [9,55]. Here, β0 = 3/2 is the leading coefficient in the BDF scheme, and M is the mass 
matrix defined as

M δun+1
i+1 =

∫
� f (tn+1)

v · ρ f δun+1
i+1 d�. (49)

Note that an approximation of the matrix F−1 by inexact matrices Q1, Q2 generally (with explicit methods) results in 
splitting errors that can affect the overall accuracy of the temporal scheme. The splitting error with the current choice of 
Q1, Q2 would be of the order of (δ t)2 with the pressure-correction algorithm [9,56] and would not affect the accuracy 
of BDF2 in any case. However, in the current implicit method, the inexact factorization affects only the convergence of the 
iterations, and not a temporal accuracy of the scheme, which is not affected by the structure of the iteration matrix, so the 
choice of an inexact factorization in implicit methods is more forgiving.

With this inexact LU-factorization, a solution of the original system, Eq. (44), is equivalent to a solution of three split 
equations, with an intermediate velocity field δũn+1

i+1 introduced as an auxiliary variable [9,55]

F δũn+1
i = −NM

n+1
i ,

DM−1G δpn+1
i+1 = D δũn+1

i+1 ,

M δun+1
i+1 = M δũn+1

i+1 − G δpn+1
i+1 .

(50)

The first equation in the system of Eq. (50) is in the form of a Helmholtz equation, and is solved by the PCG method 
with the inverse mass matrix as the preconditioner, and the second Poisson-like equation is solved by the Generalized 
Minimal Residual Method (GMRES) with a multi-grid preconditioning [9]. Note that in the current implementation of the 
spectral-element method, a discrete Helmholtz operator is symmetric positive definite [9,54], which makes it possible to 
use PCG solver for the Helmholtz equation. The velocity and the pressure fields are updated iteratively until κ f , i+1 =
‖δun+1

i+1 ‖2/‖un+1
i ‖2 ≤ κ f and κp, i+1 = ‖δpn+1

i+1 ‖2/‖pn+1
i ‖2 ≤ κp . The baseline values of velocity and pressure tolerances are 

set to κ f = 10−6, κp = 10−5 in all the test cases in the current paper, apart from the tolerance sensitivity study in Sec. 5, 
for which they are varying. When the velocity tolerance κ f varies, the pressure tolerance is always set up as κp = 10 κ f . 
To accelerate convergence of the iterations, Aitken relaxation [27] is used as described below in Eq. (61), but acting on the 
velocity and pressure fields, un+1

i , pn+1
i .

2.3. Solid and fluid spatial discretization

To solve the solid domain equations of Eq. (5), with the Newmark method, Eq. (26), initial condition of Eq. (2), and 
boundary conditions of Eq. (3), Eq. (4), and the fluid domain equations in a no-GCL form of Eq. (31), Eq. (32), or a GCL 
form of Eq. (39), Eq. (40), initial condition, Eq. (12), and boundary conditions, Eq. (13), Eq. (14), a spectral element method 
(SEM) implemented in a solver Nek5000 [9] is employed, that ensures a high-order spectral convergence in space with 
p-refinement.

In a spectral-element formulation, the computational domain �s or � f is decomposed into a set of nonoverlapping 
adjacent elements �e mapped from a reference element �̂. Variables from different search spaces H1(�̂) or L2(�̂) are 
projected onto subspaces PN , PM , where M = N − 2 in the current formulation. Thus, in a solid domain, the displacement 
field at a time step tn+1, dn+1

e (ξ) ∈H1(�̂s) is discretized as

dn+1
e (ξ) =

N∑
i=0

N∑
j=0

N∑
k=0

dn+1
e, i jkπN,i(ξ1)πN, j(ξ2)πN,k(ξ3), ξ ∈ �̂s, (51)

and in a fluid domain, the velocity field at a time step tn+1, un+1
e (ξ) ∈ H1(�̂ f ), and the pressure pn+1

e (ξ̃) ∈ L2(�̂ f ) are 
represented as

un+1
e (ξ) =

N∑
i=0

N∑
j=0

N∑
k=0

un+1
e, i jkπN,i(ξ1)πN, j(ξ2)πN,k(ξ3), ξ ∈ �̂ f , (52)

pn+1
e (ξ̃) =

N−1∑
i=1

N−1∑
j=1

N−1∑
k=1

pn+1
e, i jkπ̃N−2,i(ξ̃1)π̃N−2, j(ξ̃2)π̃N−2,k(ξ̃3), ξ̃ ∈ �̂ f . (53)

Here, dn+1
e, i jk , un+1

e, i jk , pn+1
e, i jk , are the nodal values of displacements (for solid), velocity and pressure (for fluid), in the cor-

responding elements at a time step tn+1, the basis functions πN,α(ξβ), π̃N−2,α(ξ̃β ), α = {i, j, k}, β = {1, 2, 3}, are the 
Lagrange interpolating polynomials of degree N , N − 2, respectively. For a high-order integration, the quadrature nodes are 
10
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defined as the Gauss-Lobatto-Legendre (GLL) nodes, ξβm, m=0, ... N , for PN integration, and the Gauss-Legendre (GL) nodes, 
ξ̃βm, m=1, ... N−1, for PN−2 integration. The Lagrange interpolating polynomials πN,α(ξβ), π̃N−2,α(ξ̃β ), satisfy the properties

πN,α(ξβm) = δαm

π̃N−2,α(ξ̃βm) = δαm,
(54)

where δαm is the Kronecker delta function.
With this discretization, the inner products in the governing equations for the solid and the fluid, Eq. (5), Eq. (31), 

Eq. (32), Eq. (39), Eq. (40), are evaluated using Gauss integration on the corresponding GLL or GL nodes on an element-by-
element basis, and then assembled across the union of elements encompassing the solid and the fluid domains, respectively. 
Upon discretization and assembly, the inner products take a form of discrete matrix-vector products, where the matrices 
correspond to a discretized form of the mass, stiffness, and other spectral-element matrices as defined in Eq. (30), Eq. (44), 
while the vectors correspond to the unknown arrays dn+1

e, i jk , un+1
e, i jk , pn+1

e, i jk across the solid and fluid elements. For deformed 
geometries, spectral-element matrices contain the Jacobian terms of the mapping functions between the physical element 
�e and the reference element �̂. For a global assembly of the inner products across the elements, a connectivity operator 
C is used, which defines a gather, dn+1 = CT dn+1

L , and scatter, dn+1
L = C dn+1 operations, where dn+1

L represent the local, 
unassembled, arrays, and dn+1 represent the global, assembled arrays, similarly for velocity and pressure. The gather-scatter 
operators then appear multiplicatively at the left and the right of the corresponding spectral-element matrix operators in 
the discretization of the inner products, see, Refs. [9,45,54,57] for more details. With the discretizations (52)–(51) and the 
property (54), the mass matrix is diagonal in spectral-element methods, and consists of the corresponding Gauss integration 
quadrature weights on the diagonal [9,57].

2.3.1. Fluid-structure interaction with partitioned coupling
A fluid-structure coupling is accomplished via a partitioned approach, which advances the fluid and solid equations 

iteratively with a fixed-point iteration algorithm using Aitken relaxation [26,27] to accelerate convergence of the iterations. 
The solid and fluid spectral-element meshes are matched at the FSI boundary, � f si(0), at time t = 0, and, due to an ALE 
geometry update that guarantees the continuity of the displacements between the solid and fluid domains in a discrete 
sense, as described in Sec. 2.2.2, the congruence of the solid and fluid meshes is preserved at � f si(t) at t ≥ 0. Therefore, a 
simple exchange of the nodal values between the meshes is performed to communicate the corresponding solid and fluid 
variables to satisfy the coupling boundary conditions, and no spatial interpolation is required. The algorithm for the fluid-
structure coupling that implicitly satisfies the fluid-structure interface boundary conditions, Eq. (23) and Eq. (24), thus reads 
as follows: at each new time step tn+1

1. Fluid: Solve for un+1
k=1 and pn+1

k=1 via Eqs. (39), (40) (IE-ALE update), or (31), (32) (CN-ALE update), with the mesh velocity 
wn+1

k=1 calculated from Eq. (17), Eq. (38) using boundary conditions

ŵn+1
int,k=1(x̂) = δt

2

[
ḋn(x̂) + ḋn−1(x̂)

]
∈ � f si(0), (55)

for IE-ALE update, or

ŵn+1
int,k=1(x̂) = ḋn(x̂) ∈ � f si(0), (56)

for CN-ALE update. Calculate σ f
n+1
k=1 .

2. Solid: Solve for dn+1
k=1 , ḋn+1

k=1 , d̈n+1
k=1 via Eqs. (26), (29) with σ f

n+1
k=1 on � f si(tn+1).

Start FSI iterations in k from k = 1 until the FSI iteration convergence tolerance κ is reached:
3. Fluid: Calculate the new unrelaxed interface velocity as

w̄n+1
int,k+1(x̂) = δt

2

[
ḋn+1

k (x̂) + ḋn(x̂)
]

∈ � f si(0), (57)

for IE-ALE update, or

w̄n+1
int,k+1(x̂) = ḋn+1

k (x̂) ∈ � f si(0), (58)

for CN-ALE update.
4. Fluid: Evaluate the FSI iteration convergence criteria κi+1 based on the interface velocity

κi+1 =
∥∥∥w̄n+1

int,k+1 − ŵn+1
int,k

∥∥∥
2
/

∥∥∥ŵn+1
int,k

∥∥∥
2
. (59)

Exit the loop if κi+1 is below a predefined threshold κ .
11
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5. Fluid: Relax the interface velocity as

ŵn+1
int,k+1 = ωkw̄n+1

int,k+1 + (1 − ωk)ŵn+1
int,k, (60)

where

ωk = −ωk−1
Rk · δRk

δRk · δRk
,

Rk = w̄n+1
int,k+1 − ŵn+1

int,k,

δRk = Rk − Rk−1,

(61)

with ω1 = 0.75.
6. Fluid: Solve for un+1

k+1 and pn+1
k+1 via Eqs. (39), (40) (IE-ALE update), or (31), (32) (CN-ALE update), with the mesh velocity 

wn+1
k+1 calculated from Eq. (17), Eq. (38) using the relaxed interface velocity ŵn+1

int,k+1 calculated in Step 5 from Eq. (60)

as boundary conditions. Calculate σ f
n+1
k+1 .

7. Solid: Solve for dn+1
k+1 , ḋn+1

k+1 , d̈n+1
k+1 via Eqs. (26), (29) with σ f

n+1
k+1 on � f si(tn+1).

End FSI iterations.

The FSI iteration convergence tolerance κ is set to κ = 10−5 in all the test cases presented in the current paper, apart from 
the tolerance sensitivity study in Sec. 5, for which it is varying.

3. Verification of h/p- and temporal convergence of component solvers

This section presents verification of h/p- and temporal convergence of the solid and fluid solvers, respectively, using 
known analytical solutions.

3.1. Solid solver: nonlinear elasticity

We present a verification of the developed nonlinear solid solver based on a St. Venant-Kirchhoff material model using 
both steady and unsteady nonlinear structural mechanics test cases.

3.1.1. Nonlinear elastostatics
For a nonlinear elastostatics problem, a cubic solid block with dimensions [0, 1] ×[0, 1] ×[0, 1] is deformed by imposing 

a displacement field on all of the six faces as boundary conditions described as

dx(X, Y , Z) = AeaX − A,

dy(X, Y , Z) = BebY − B,

dz(X, Y , Z) = 0,

(62)

where non-dimensional constants A = B = 0.1, a = b = 1, and X, Y , Z denote the undeformed geometry coordinates. The 
method of manufactured solutions is used, which takes displacements defined by Eq. (62) as the analytic solution, and 
introduces a body force field ρsf to the right-hand side of the elastostatics equations to satisfy the given solution. In the 
current case, the body force is determined by

ρs fx(X, Y , Z) = −C1(2Aμsa2eaX C1 + Aa2λseaX C1) − Aa2eaX [λs(
C2

1

2
+ C2

2

2
− 1) + 2μs(

C2
1

2
− 1

2
)],

ρs f y(X, Y , Z) = −C2(2Bμsb2ebY C2 + Bb2λsebY C2) − Bb2ebY [λs(
C2

1

2
+ C2

2

2
− 1) + 2μs(

C2
2

2
− 1

2
)],

ρs f z(X, Y , Z) = 0,

C1 = AaeaX + 1,

C2 = BbebY + 1,

(63)

where the shear modulus μs and Lamé first parameter λs are calculated using a dimensionless Young’s modulus E = 1000, 
Poisson’s ratio νs = 0.3 and density ρs = 1.

The original cubic geometry is uniformly discretized with spectral elements, using the same number of elements in X , 
Y and Z directions. The elements are therefore also cubic, with equal sizes in X , Y and Z directions in an undeformed 
configuration. The element size δX in the spatial convergence studies thus refers to an element size in any direction, and 
12
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Fig. 1. Spatial convergence for a nonlinear elastostatics problem using nonlinear St. Venant-Kirchhoff material model. Element size refers to an undeformed 
configuration. P-refinement is performed with the element size δX = 1/4.

in regards to the original, undeformed, configuration. The spatial convergence for the nonlinear elastostatics problem using 
the L2-error norm of the displacement defined as

L2(d) =
√∫

�s
(dex − dcomp)2 d�

V s
, (64)

where, dcomp are the displacements obtained from the computations, dex are the corresponding exact values taken from 
Eq. (62), V s is the volume of �s in the undeformed configuration, is shown in Fig. 1. We observe a polynomial-order 
convergence with h-refinement, and a spectral convergence with p-refinement. Note that for h-refinement, the observed 
order of convergence is O (δxN+2). The deviation of plots from an expected order of convergence starts when the errors 
due to spatial discretization drop below machine precision. Errors close to machine precision were observed previously in 
elastostatics problems with spectral element methods [19,43], which might be related to favorable properties of the matrix 
operators resulting from a discretization of the elastostatics equations.

3.1.2. Nonlinear elastodynamics
A nonlinear elastodynamics test case is performed to demonstrate the spatial and the temporal accuracy of the solid 

solver on the time-dependent problems. It shares the same geometry and material properties as the elastostatics test case 
described in Sec. 3.1.1. The analytic solution, however, is given by

dx(X, Y , Z , t) = A sin(aX) sin(πt),

dy(X, Y , Z , t) = dz(X, Y , Z , t) = 0,
(65)

where the constants A = 0.1 and a = 2. Boundary conditions are, again, defined as Dirichlet boundary conditions on dis-
placements, obtained by evaluating Eq. (65) at the domain boundary faces. For the time-dependent problem, we also need 
initial conditions that are given by

dx(X, Y , Z ,0) = 0,

ḋx(X, Y , Z ,0) = Aπ sin(aX),

d̈x(X, Y , Z ,0) = 0,

(66)

and zero displacements, velocities and accelerations in Y and Z directions. Similarly, to enforce the displacement field 
defined by Eq. (65) as the analytic solution of the elastodynamics equation, Eq. (1), the body force is introduced as

ρs fx(X, Y , Z , t) = 0.5Aa2 sin(πt) sin(aX)(2μs + λs)[6Aa sin(πt) cos(aX)

+ 3A2a2 sin2(πt) cos2(aX) + 2] − Aπ2 sin(πt) sin(aX),

ρ f (X, Y , Z , t) = ρ f (X, Y , Z , t) = 0.

(67)
s y s z
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Fig. 2. Spatial convergence for a nonlinear elastodynamics problem using nonlinear St. Venant-Kirchhoff material model at time t f = 2 using time step 
δ t = 10−5. Element size refers to an undeformed configuration. P-refinement is performed with the element size δX = 1.

Fig. 3. Temporal convergence for an elastodynamics problem using nonlinear St. Venant-Kirchhoff material model at time t f = 2. Element size δX = 1/4
with 7th-order polynomials. Element size refers to an undeformed configuration.

In the elastodynamics problem, the L2 errors are defined as

L2(d) =
√∫

�s
(dex − dcomp)2 d�

V s

∣∣
t=t f

, (68)

where the exact value of displacements dex is taken from Eq. (65), and the notation 
∣∣
t=t f

signifies that the error is evaluated 
at the final time of the simulations t f , where the final time is set to t f = 2. Fig. 2 shows the results of a spatial refinement 
study for a nonlinear elastodynamics problem at the final time t f = 2. Since a spatial error is significantly smaller compared 
to a temporal error in this problem, the time step size is set to a very small value of δt = 10−5 to avoid an error interference. 
As with the static test, an order of convergence for the h-refinement tests is O (δX N+2). The curve with higher-order 
polynomials starts to deviate from the expected slope at smaller element sizes due to the fact that the spatial discretization 
errors start interfering both with temporal and with machine precision errors. p-refinement plots show a clear spectral 
convergence all the way down to machine precision. Fig. 3 demonstrates the temporal convergence of the displacements at 
the same final time of t f = 2. All three displacement components exhibit a second-order convergence in time, as expected. 
A temporal convergence study is performed using the mesh with the element size δX = 1/4 and 7th-order polynomials.
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3.2. Fluid solver: convecting Walsh’s eddies

Walsh [58] proves that if an initial condition a satisfies �a = λa and ∇ ·a = 0, then u = eνλt a and ∇p = −u ·∇u would be 
a solution of the incompressible Navier-Stokes equations in an unbounded domain. Here, ν is the kinematic viscosity, and λ
are the eigenvalues associated with the Walsh’s eigenfunction solutions. Thus, a linear combination of several eigenfunctions 
could be used as an analytical exact solution for assessing spatial and temporal accuracy. To make the test case more 
interesting, a convecting version of Walsh’s solution could be implemented by applying a convecting frame of reference 
to the original solution [58] by means of a coordinate transformation. Here, we use the same exact solution as in [57]
that employs a coordinate transformation x = x̃ + cxt , y = ỹ + c yt , where (cx, c y) is the convecting velocity, (x̃, ỹ) is the 
convecting frame of reference, where an original Walsh’s solution is imposed, and (x, y) is the stationary frame of reference. 
The convecting Walsh’s eddy solution, with the corresponding initial conditions given by the stream function

ψ(x, y,0) = −1

5
cos(5 x) − 1

5
sin(5 y) + 1

4
sin(3 x) cos(4 y) + cx y − c y x, (69)

is then expressed as (see [57] for more details):

ux(x, y, t) = e−25νt[− cos(5 ỹ) + cos(4 ỹ) sin(3x̃)] + cx,

u y(x, y, t) = e−25νt[− sin(5x̃) − 3

4
cos(3x̃) sin(4 ỹ)] + c y,

p(x, y, t) = 1

64
e−50νt[−16 + 16 cos(6x̃) + 8 cos(8x̃ − 4 ỹ) − 32 cos(2x̃ − 4 ỹ)

+ 9 cos(8 ỹ) − 8 cos(8x̃ + 4 ỹ) + 32 cos(2x̃ + 4 ỹ) − 4 sin(3x̃ − 9 ỹ)

+ 32 sin(5x̃ − 5 ỹ) + 36 sin(3x̃ − ỹ) − 32 sin(5x̃ + 5 ỹ)

+ 36 sin(3x̃ + ỹ) − 4 sin(3x̃ + 9 ỹ)].

(70)

We use (cx, c y) = (1, 0.3) for a convecting velocity, ν = 0.05 for viscosity, and a square domain of � f = [0, 2π ] × [0, 2π ]
for a geometry. The original square geometry is uniformly discretized with spectral elements, using the same number 
of elements in x and y directions. The elements are therefore also square, with equal sizes in x and y directions in an 
undeformed configuration. The element size δX in the spatial convergence studies thus refers to an element size in any 
direction, and in regards to the original, undeformed, configuration. Boundary conditions at the edges of � f are set up 
as Dirichlet conditions on velocity evaluated from Eq. (70), while pressure boundary conditions in the current P N − P N−2
formulation are not required, and are evaluated internally using homogeneous Neumann boundary conditions [9].

To test the performance of the developed ALE fluid solver on deformable meshes, a domain deformation shown in Fig. 4
based on undeformed mesh coordinates X and Y is imposed as

wx(X, Y , t) = 1.2π

5
sin(X) sin(Y ) cos(

2π

5
t),

w y(X, Y , t) = 2.4π

5
sin(X) sin(Y ) cos(

4π

5
t).

(71)

Note, since ALE equations (10), (11) transform back to the original Navier-Stokes equations in a stationary domain when 

the ALE derivative ∂
∂ t

∣∣∣∣
x̂

is converted back to the Eulerian derivative ∂
∂ t

∣∣∣∣
x

, the flow solution in both stationary and deformed 

domains is the same, as long as the domain deformation does not influence the flow through a modification of the boundary 
conditions (as would be the case if actual moving or deforming objects were present). Since, in the current case, the mesh 
movement is entirely “virtual” (no actual solid surfaces are moving), the flow solution given by Eq. (70) still holds on a 
deforming domain.

The spatial and temporal convergence for both velocity and pressure fields is investigated through an L2 error norm 
defined as

L2(u) =
√√√√∫

� f
(uex − ucomp)2 d�

V f

∣∣
t=t f

,

L2(p) =
√√√√∫

� f
(pex − pcomp)2 d�

V f

∣∣
t=t f

,

(72)

where V f is the volume of the domain � f , subscript comp is the result from the computations, ex is the analytical value 
that refers to Eq. (70) in this case, and the notation 

∣∣
t=t f

signifies that the error is evaluated at the final time of the 
simulations t f .
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Fig. 4. Mesh deformation and the x-velocity solution for the convecting Walsh’s eddies case at t = 1. Element size refers to an undeformed configuration.

Fig. 5. Spatial refinement for the convecting Walsh’s eddies case at time t f = 1 using time step δ t = 10−4. Element size refers to an undeformed configu-
ration. P-refinement is performed with the element size δX = 2π/16.

Spatial convergence study is performed with time step δ t = 10−4. Fig. 5(a) shows the L2 error norm convergence of 
velocity and pressure fields with regard to the varying element sizes δX by 5th and 7th order polynomials. The convergence 
rates of velocity and pressure fields demonstrate the expected O (δX N ) polynomial order of convergence. The p-refinement 
plot shown in Fig. 5(b) confirms a spectral convergence for both velocity and pressure fields. Both plots confirm the expected 
spectral-element convergence rates on deforming meshes. The deviation of plots from an expected order of convergence 
starts when the errors due to spatial discretization drop below a temporal error of about O (δ t2) ∼ 10−8 −10−7 as expected.

The temporal convergence shown in Fig. 6 contains the results at t f = 5 from BDF2 background temporal scheme with 
three options for the interface update: 1) IE-ALE interface update with GCL, 2) IE-ALE interface update with no GCL, 3) 
CN-ALE interface update with no GCL. A temporal convergence study is performed using the mesh with the element size 
δX = 2π/16 and 13th-order polynomials. As expected, BDF2 with IE-ALE interface update does not achieve second order 
temporal accuracy without GCL, since the geometry is updated linearly [46]. The two other schemes show the expected 
second-order temporal convergence rates on deforming meshes.
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Fig. 6. Temporal convergence for the convecting Walsh’s eddies case at time t f = 5. Element size δX = 2π/16 with 13th-order polynomials. Element size 
refers to an undeformed configuration.

Fig. 7. Non-dimensional 2D FSI benchmark geometry following Ref. [33].

4. Verification of the fluid-structure interaction solver against available benchmark solutions

This section concerns with a verification of the developed high-order fluid-structure interaction solver against available 
numerical benchmarks solutions. We start with a two-dimensional test case proposed by Turek and Hron [33], and then pro-
ceed to a three-dimensional pressure wave propagation test case considered in Refs. [36,38]. In all the test cases presented 
below, fluid and solid spectral-element meshes are conforming, and the same degree of the polynomial approximation is 
used for both the fluid and the solid solvers, i.e. the information between the corresponding fluid and solid nodes at the 
interfaces can be directly exchanged, without the need for an interpolation.

4.1. 2D Turek-Hron [33] FSI benchmark

A common fluid-structure interaction benchmark, versus which a performance of the fluid-structure interaction codes 
is often assessed [15,16,59], involves a two-dimensional problem proposed by Turek and Hron [33], which consists of an 
interaction of an incompressible fluid with a geometrically nonlinear structure, where a fluid flowing over a rigid cylinder 
excites a flexible cantilever beam attached to a cylinder, as shown in a geometrical setup in Fig. 7, where all geometrical 
parameters have been non-dimensionalized by the cylinder diameter. The fluid solver boundary conditions are set as a 
parabolic velocity inlet given by Eq. (73) below; a constant-pressure derivative-free outlet; and no-slip, rigid and stationary 
top, bottom and cylinder walls. A flexible elastic solid bar with a curved left side for a no-gap connection is fully attached to 
the cylinder. The boundary conditions between the fluid and the flexible elastic bar are the FSI interface conditions defined 
by Eqs. (23), (24).

Following [33], the inlet flow velocity profile is prescribed as

ux =

⎧⎪⎪⎨
⎪⎪⎩

1.5U
y(4.1 − y)

(4.1/2)2

[1 − cos(πt/tu)]
2

0 ≤ t < tu,

1.5U
y(4.1 − y)

(4.1/2)2
t ≥ tu,

(73)

where a nonlinear ramping function is applied to an inlet velocity over a time period tu to alleviate the numerical issues 
associated with an abrupt start-up motion.
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Fig. 8. CSM3 test case comparison for the solid solver with the results of the FSI benchmark [33]. Displacements are for the point located at the rightmost 
tip of the bar along the centerline.

A nonlinear St. Venant-Kirchoff structural dynamics equation, Eq. (1), is solved within the flexible bar, but not within 
the rigid cylinder, and the solid boundary conditions for the bar are set as the zero displacements at the left curved side, 
and FSI interface boundary conditions (23) and (24), at all the other three sides of the bar interacting with the fluid. The 
fluid mesh contains a total of 760 spectral elements, and the solid mesh contains 34. The solution for all the test cases is 
obtained with the 6th order polynomial approximation.

In this paper, we compare the results of Ref. [33] with the current spectral-element results for the solid-only, fluid-only, 
and the FSI test cases, termed as CSM3, CFD3 and FSI3 in [33]. In the CSM3 test case, the geometry of the problem con-
tains only the solid bar with the left side fixed, and an additional gravity force. In the CSM3 test, the original, non-rescaled, 
geometry by [33] is used, with the non-dimensional structure properties set as the solid density ρs = 1000, Poisson’s ratio 
νs = 0.4, Young’s modulus E = 1400000, and a gravity force f y = −2.

For the CFD3 and FSI3 test cases, the geometry is used as shown in Fig. 7, non-dimensionalized by the cylinder 
diameter, and the other non-dimensional parameters are set as tu = 2, U = 20, ρ f = ρs = 1 as fluid and solid density, fluid 
viscosity μ = 0.1, Young’s modulus for the solid is E = 560000, Poisson’s ratio is νs = 0.4, and the outflow pressure is set 
to a reference value of 0. In the CFD3 case, the geometry is as in Fig. 7, but the solid bar is kept stationary. In FSI3, a 
complete fluid-structure interaction of the presented geometry is studied.

The CSM3 results documenting the temporal history of X and Y displacements of the point located at the rightmost tip 
of the bar along the centerline for Nek5000 as compared to Ref. [33] are shown in Fig. 8. For the CFD3 test case, the total 
lift and drag over the cylinder and the bar are compared in Fig. 9. For both test cases, the results shown in Fig. 8 and Fig. 9
confirm excellent agreement with Ref. [33].

The visualization of the streamwise velocity field for the FSI3 test case computed by Nek5000 is presented in Fig. 10
for two selected times of t = 4.475 and t = 4.575. A corresponding mesh deformation pattern, zoomed in around the 
solid structure is shown in Fig. 11. The comparison of both the total lift and drag, as well as the streamwise and vertical 
displacement of the rightmost tip of the bar along the centerline, for the FSI3 test case, are shown in Fig. 12 and Fig. 13. 
Again, an excellent agreement between the current computations and Turek and Hron [33] results is observed, with only 
38,906 total degrees of freedom in the current mesh.

4.2. 3D FSI pressure wave propagation benchmark

In this section, we compare the results of our three-dimensional spectral-element FSI implementation with the previous 
numerical solutions using a 3D FSI test case that considers a pressure wave propagation in a flexible pipe proposed in [36]
and later studied in [38]. The geometry consists of a cylindrical pipe with a flexible thin wall of a thickness d = 0.1D , 
where D is the inner diameter of the pipe. The pipe has a length of 5D and is filled with an incompressible fluid. The 
three-dimensional pipe geometry is presented in Fig. 14(a), and a spectral-element mesh for the fluid and solid is shown 
in Fig. 14(b), where the blue color corresponds to the fluid mesh, and the green color to the solid mesh. The fluid mesh 
contains 32 elements along the circumference, two layers of elements between the radial distance of 0.45 to 0.5 (normalized 
with the pipe diameter), one layer of elements between the radial distance of [0.4, 0.45], and the core of the cross-sectional 
circular mesh consists of approximately uniform quadrilateral elements with the average element size of ∼ 0.08. The fluid 
mesh has a total of 224 elements inside the cylindrical cross-section, and 40 equally spaced elements in the streamwise 
18



Fig. 9. CFD3 test case comparison for the fluid solver with the results of the FSI benchmark [33].

Fig. 10. Visualization of streamwise velocity for FSI3 test case.

direction. The solid is discretized with one layer of elements across the wall thickness, while the element distribution along 
the circumferential and streamwise directions matches that of the fluid. The fluid is assumed to be incompressible, as before, 
and the solid is discretized with a nonlinear St. Venant-Kirchoff material model. In the current test case, the fluid has the 
non-dimensional density ρ f = 1 and viscosity μ = 0.035. The solid has a density ρs = 1.2, Young’s modulus E = 3 × 106

and a Poisson’s ratio νs = 0.3. Both fluid and solid parameters, as well as the initial and boundary conditions described 
below, match the parameters of Refs. [36,38]. The pipe flow in the current test case is driven by an inlet pressure, the outlet 
pressure is kept at zero, and the rest of the fluid boundary is the FSI interface. For the solid, the inner surface is interacting 
with the fluid through the FSI boundary conditions, the outer surface is stress-free, and the structure is clamped at the inlet 
and outlet.

To initialize the pressure wave propagation benchmark, the fluid, originally at rest, is disturbed by a sudden inlet pressure 
impulse of the magnitude of 1.3332 × 104 applied for the time period [0, 0.005], after which the inlet pressure goes back to 
zero. This pressure impulse sends a pressure wave into the domain, which propagates downstream and causes the deflection 
of the pipe surface as shown in Fig. 15. In the current setup, the z axis is in the streamwise direction, while x and y axes are 
in the pipe cross-sectional plane. In the current test case, the maximum fluid streamwise velocity achieved is Umax = 28, 
Y. Xu and Y.T. Peet Journal of Computational Physics: X 10 (2021) 100084
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Fig. 11. FSI3 test case mesh deformation visualization with 6th-order polynomials.

Fig. 12. FSI3 test case comparison with the results of the FSI benchmark [33].

Fig. 13. FSI3 test case comparison with the results of the FSI benchmark [33]. Displacements are for the point located at the rightmost tip of the bar along 
the centerline.
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Fig. 14. 3D pipe geometry and the computational mesh for the SEM simulations of the 3D FSI pressure wave propagation benchmark.

Fig. 15. Visualization of the pressure field and a pipe deflection in the streamwise-radial plane at time t = 0.0075 for the 3D FSI pressure wave propagation 
benchmark. Solution is computed with 6th-order polynomials both for the fluid and for the solid.

which gives a Reynolds number estimate of Remax = Umax D/ν = 800, based on the pipe diameter. This ensures that the 
flow stays in a laminar regime, and the pipe deformation is axisymmetric. Following [38], we track a temporal evolution 
of the point with coordinates (X, Y , Z) = (0.5, 0, 2.5) in the undeformed configuration, which corresponds to a point at the 
fluid-structure interface in the middle of the tube. Again, since the motion is axisymmetric, any interface point with Z = 2.5
should give the same results.

The simulations are performed with 4th and 6th-order polynomials and time steps δt = 10−4 and δt = 4.4721 × 10−5. 
The temporal evolution of the displacement of the middle point of the pipe FSI interface is compared with the results of 
the implicit method of Fernández et al. [38], which uses second-order accurate in space finite element (FEM) discretization, 
in Fig. 16. The interface displacement occurs both in the radial and in the streamwise directions, so that the displacement 
magnitude is compared. We first note that Nek5000 results with p = 4 and p = 6 are nearly identical, which testifies of an 
adequate spatial resolution for this problem. While the agreement with the results of Fernández et al. [38] is generally very 
good, slight differences are noted. We first remark that both the current results and the results of Ref. [38] are sensitive to 
the time step value, with a consistent trend of an upward shift of the peak at smaller time steps. We also note a time lag 
of the peak in SEM versus FEM, testifying that the spatial discretization also affects the temporal dynamics. Sensitivities to 
the time step and the influence of spatial discretization on the time shift in a structure response in the FSI problems will 
be further discussed in Sec. 5. While the 2D Turek and Hron [33] FSI benchmark was studied extensively, results for this 3D 
FSI benchmark are scarce. More numerical solutions are needed to establish the uncertainty bounds on the results produced 
so far by these two numerical methods, FEM by [38] and the current SEM.

5. New proposed 3D FSI benchmark: flow in a compliant wall channel

5.1. Problem formulation

5.1.1. Geometry
In this section, we present a new three-dimensional benchmark for studying a fluid-structure interaction problem, which 

uses consistent initial and boundary conditions, continuous both in space and time, and is quite simple to implement. The 
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Fig. 16. Comparison of the magnitude of midpoint displacement versus time with Fernández et al. [38] for the 3D FSI pressure wave propagation benchmark. 
Fernández et al. [38] results are from their implicit coupling method.

benchmark is inspired by a physical problem of a fluid flow in a channel interacting with a compliant wall, which has 
potential applications in flow control related to a delay of a laminar-to-turbulent transition [5,6], as well as skin friction 
drag reduction [7].

The proposed benchmark is studied in this section to verify the h/p- and temporal convergence of a high-order spectral 
element solver on a globally-coupled FSI problem using self-convergence tests. The effect of the solver tolerances on the 
numerical errors in the FSI setting is also discussed.

The geometry for the proposed FSI benchmark consists of a rectilinear channel flow domain of the dimensions [0, 6] ×
[−1, 1] × [−1, 1] filled with incompressible fluid (all distances are normalized with the channel half-width), and a flexible 
solid layer with dimensions [0, 6] × [1, 1.2] × [−1, 1] added on top of the fluid domain. Note, in this setting, only one (top) 
channel wall is elastic, while the other (bottom) wall is rigid, a configuration typical in previous studies of a compliant 
wall channel [40,41]. The bottom rigid wall is thus not modeled by a solid solver, but rather represented by the no-slip 
boundary conditions in the fluid domain. The other boundary conditions for the fluid are periodic in a spanwise direction, 
fluid-structure interface for the top compliant wall, inlet velocity boundary conditions, and outflow boundary conditions 
with a constant pressure set to zero at the outlet. The solid domain added to the top of the fluid domain also has periodic 
boundary conditions in a spanwise direction, it is clamped at the inlet and outlet (zero displacements), its top surface is 
stress-free, and its bottom surface that interacts with the fluid has the FSI interface boundary condition.

The initial condition for the fluid flow is a laminar parabolic velocity profile (ux, u y, uz) = (U (y), 0, 0), where the non-
dimensional velocity profile is specified as

U (y) = 0.15 (1 − y2), (74)

while the solid starts at rest (zero displacements, velocities, and accelerations). The non-dimensional material properties 
for the fluid are ρ f = 1, μ = 0.0001 (corresponding to a flow Reynolds number of 1500 based on a channel half-width 
and an unperturbed centerline velocity), and for the solid the parameters are ρs = 5, νs = 0.3, E = 300, with a St. Venant 
Kirchhoff material model used to model nonlinearly-elastic solid behavior. The unsteady interaction between the fluid and 
the structure is initiated by sending a transient velocity perturbation through the inlet into the flow domain, in the form of

ux(0, y, z, t) =
{

U (y) + u′(y, z, t), 0 ≤ t < tu,

U (y) t ≥ tu,
(75)

where the perturbation u′(y, z, t) is given by

u′(y, z, t) = 0.075(1 − y2)
1 − cos (2π t)/tu

2
, (76)

which corresponds to an unsteady velocity perturbation with a peak amplitude of 0.0075 (5% of the undisturbed centerline 
velocity). This perturbation, also in a form of a parabolic profile consistent with the fluid domain boundary conditions, is 
added to the undisturbed flow profile U (y) given by Eq. (74) for a duration of a time period tu = 2. The perturbation is 
designed to gradually increase while t ∈ [0, tu/2] and then gradually decrease until zero at t = tu , after which the pertur-
bation is turned off, and the flow inlet velocity assumes its undisturbed value. The simulations are run from the beginning 
of the transient (t = 0) until the final time of t f = 25. A three-dimensional view of the simulated flow velocity and the 
solid deformation at a time t = 20 is provided in Fig. 18. The temporal series of the midpoint wall vertical displacement 
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Fig. 17. Temporal series of the midpoint wall vertical displacement and the total flow drag (pressure and viscous drag) on the compliant wall for different 
meshes.

Fig. 18. The fluid flow and the solid deformation at a time t = 20 for the proposed compliant wall channel 3D FSI benchmark using the mesh M4(P 8,0.03125) , 
see Table 1. Fluid field: streamwise velocity; solid field: vertical displacement.
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Table 1
Meshes used for the self-convergence studies in the proposed compliant wall channel 3D FSI benchmark.

Mesh level M1 M2 M3 M4 M5 M6 M7

Element size, δY , solid 1/10 1/10 1/10 1/10 1/10 1/10 1/10
Element size, δX , fluid and solid, all other directions 1/2 1/3 1/4 1/5 1/6 1/7 1/8
Total number of elements (fluid and solid) 288 864 1920 3600 6048 9408 13824

Table 2
Meshes with one vertical layer of solid elements.

Mesh level m1 m2 m3

Element size, δY , solid 1/5 1/5 1/5
Element size, δX , fluid and solid, all other directions 1/2 1/3 1/4
Total number of elements (fluid and solid) 240 756 1728

Table 3
Test meshes and a reference mesh for each type of the refinement studies performed in the proposed compliant wall channel 3D FSI benchmark.

Type of study Mesh level Polynomial order Time step, δt Tolerances, κs, κ f , κ Reference mesh

H-refinement M1 − M4 P 4 0.03125 10−12,10−6,10−5 M5(P 4,0.03125)

P-refinement M4 P 4, P 6, P 8 0.03125 10−12,10−6,10−5 M7(P 6,0.03125)

Time-refinement M2 P 4 0.03125, 0.0625, 0.125 10−12,10−6,10−5 M2(P 4,0.01)

and the flow drag on the compliant wall (fluid force in a streamwise direction, see Eq. (77)), using the series of meshes 
described below, are shown in Fig. 17. Fig. 17 and Fig. 18 demonstrate that although the original perturbation is switched 
off at a time t = 2, an unsteady cycle of the fluid structure interaction persists far beyond the time during which the original 
perturbation is active.

5.1.2. Description of meshes
In this section, we perform a spatial and a temporal refinement study using a series of meshes, M1 − M7. For the meshes 

M1 − M7, the number of solid elements in the y direction is fixed at two (size of δY = 1/10 in wall-normal direction). We 
also add three additional meshes, m1, m2 and m3, with one vertical layer of solid elements instead of two, to check a 
spatial refinement of the solid, see Table 2. The size of the elements in all other directions (x and z for the solid, and x, y
and z for the fluid) is the same within each mesh level, and is uniformly refined across the meshes, following a relation 
δ(Mk) = 1/(k + 1), δ(mk) = 1/(k + 1). As before, the element size δX refers to an element size in any direction for the fluid, 
and to either x or z direction for the solid (while δY = 1/10 or δY = 1/5 for the solid meshes), and in regards to an original, 
undeformed, configuration. Table 1 and Table 2 show the corresponding element sizes and the total number of elements (in 
fluid and solid meshes combined) for all the meshes simulated.

In a series of verification studies presented below, including h-refinement, p-refinement and temporal refinement, the 
meshes from Table 1 are used with a varying polynomial order and time step of the simulation. To keep the notation clear, 
we define the mesh at a level k with the polynomial order p and a time step δt as Mk(Pp, δt) . For example, the mesh 
M2 using 4th order polynomials and a time step δt = 0.03125 is denoted as M2(P 4, 0.03125) . Furthermore, for a consistent 
refinement study, the reference solution is taken from a mesh that has a highest level of refinement in a variable with 
respect to which the refinement is studied. Table 3 gives a list of the test meshes and a mesh used for a reference solution 
for each type of the refinement studies performed. The tolerances in the spatial and temporal refinement studies are set 
to their baseline values of κs = 10−12, κ f = 10−6, κ = 10−5 in all the test meshes and the reference mesh, as shown in 
Table 3, while they vary in the tolerance sensitivity study as described below.

5.1.3. Error metrics
To evaluate the performance of the coupled solver and the errors of approximation pertinent to an unsteady fluid-

structure interaction problem, we monitor the time-dependent errors of the two relevant quantities: 1) vertical displacement 
of the midpoint of the FSI interface, dy (Xm, Ym, Zm, t), where (Xm, Ym, Zm) = (3, 1, 0) in the undeformed configuration, 2) 
the flow drag at the FSI interface defined as the integral of the x-component of the local fluid force,

Fd(t) = −
∫

� f si(t)

(σ f �n f ) · �i d �, (77)

where σ f is the Cauchy stress tensor of the fluid defined by Eq. (25), �n f is the outward-pointing unit normal vector at the 
FSI interface, �i is the unit vector in a streamwise direction. Since the fluid Cauchy stress tensor consists of the pressure and 
viscous components, pressure and viscous drag can be defined, correspondingly, as
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Fig. 19. Spatial convergence for the compliant wall channel 3D FSI benchmark.

F p(t) =
∫

� f si(t)

(p �n f ) · �i d �, (78)

F v(t) = −
∫

� f si(t)

[μ(∇u + (∇u)T ) �n f ] · �i d �, (79)

with

Fd(t) = F p(t) + F v(t). (80)

We note that the number of elements in streamwise and spanwise directions is always even for all the meshes, so that no 
interpolation is required to obtain the midpoint displacement, since it is located at the intersection between the elements, 
where a GLL node always exists.

In this study, we investigate two error norms, L2 and L∞ , defined as

L2(q) =
√√√√∫ t f

0

(
qref (t) − qcomp(t)

)2 d t

t f
, (81)

L∞(q) = max
t∈[0,t f ]

∣∣qref (t) − qcomp(t)
∣∣ , (82)

where qcomp is the quantity taken from the simulations at a particular refinement level, and qref is the corresponding 
reference value taken from a reference mesh solution, and the time t f = 25 is set in the current simulations.

5.2. Results

5.2.1. H-refinement
The results of the h-refinement study with the meshes M1 − M5 using 4th-order polynomials and a time step size 

of δt = 0.03125 are shown in Fig. 19(a), where the M5 results with the same polynomial order and the time step are 
considered as a reference value, and the errors for the meshes M1 − M4 with respect to M5 mesh values are plotted. 
Fig. 19(a) shows that both L2 and L∞ errors of displacement exhibit expected 4th-order of convergence in the asymptotic 
limit. The order of convergence of the drag value is however reduced to the 3rd order, both for L2 and L∞ error norms. 
In order to investigate what hampers the convergence of the drag values, we look into the L2 errors for the pressure and 
viscous drag separately, also plotted in Fig. 19(a). The results show that while the pressure drag shows the expected 4th-
order of convergence, it is the viscous drag that converges with the 3rd order. The reason is that the viscous drag includes 
the first-order spatial derivatives of the velocity quantities in its definition. While velocities are approximated with the 
pth-order polynomials functions, their derivatives are consequently approximated by the (p − 1)st order polynomials, which 
drops the rate of convergence of a quantity that depends on the spatial derivatives of the solution variables by an order of 
a derivative [60].
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Table 4
Temporal convergence rates r obtained with the Richardson extrapolation 
for the midpoint displacement and the total flow drag on the compliant 
surface evaluated using the meshes M2(P 4,0.03125) − M2(P 4,0.125) .

Scheme Midpoint displacement Total flow drag

IE-ALE with GCL 0.9440 0.6387
CN-ALE 1.8272 1.5008

Table 5
Mesh, tolerance values, and a reference solution used for the solver tolerance study in the proposed compliant wall channel 3D FSI benchmark.

Mesh level Polynomial order Time step, δ t κs κ f κ Reference mesh

M2 P4 0.05 10−12
[
10−6 : 10−2

] [
10−6 : 10−2

]
M2(P 4,0.05) with (
κs, κ f , κ

) = (
10−12,10−6,10−6

)

5.2.2. P-refinement
To study the FSI solver convergence with p-refinement, we choose the mesh M4 with 4th, 6th and 8th order polynomials 

and the same time step of δt = 0.03125, see Table 3, while the reference solution is provided by the mesh M7 with 
the 6th order polynomials and δt = 0.03125. The results of the p-refinement convergence study are shown in Fig. 19(b). 
The expected exponential order of convergence (linear in a semi-log plot) is observed for both displacement and drag. As 
expected, the slope of the convergence plot is steeper for the displacement versus drag errors, commensurate with the fact 
that displacements are approximated with higher-order polynomial functions as discussed above.

5.2.3. Temporal refinement
For a temporal convergence verification, the mesh M2 with 4th-order polynomials is used, with the time steps δt =

0.125, δt = 0.0625 and δt = 0.03125, with a reference solution taken from M2(P 4, 0.01) , as specified in Table 3. In the 
temporal convergence study, the two schemes which showed a second-order convergence in the fluid-only tests, namely, 
the IE-ALE with GCL, and CN-ALE (see Sec. 2.2.2) are compared. The results are shown in Fig. 20. It is interesting to see 
that, although IE-ALE with GCL showed a second-order temporal convergence in fluid-only tests on deforming meshes, 
its accuracy drops to the first order in the fully coupled FSI problem, while the CN-ALE scheme preserves the second 
order accuracy in the fully coupled problem. For a better estimation of the convergence slope, we perform a Richardson 
extrapolation of errors with the three chosen time steps, and calculate the convergence rate r as

r (q) = 1

ln(2)
ln

( ∣∣q(M2(P 4,0.125)) − q(M2(P 4,0.0625))
∣∣∣∣q(M2(P 4,0.0625)) − q(M2(P 4,0.03125)
∣∣)

)
, (83)

where q is the quantity to be estimated, evaluated with the different meshes. In the current study, q is taken to be the time-
averaged value of the midpoint displacement and the total flow drag on the compliant surface. The results of Richardson 
extrapolation are shown in Table 4. Table 4 confirms the conclusion that CN-ALE scheme preserves the second-order of 
accuracy, while IE-ALE scheme does not. This shows that, in order to keep a nominal order of convergence in the fully 
coupled problem, not only do both component codes have to have a time stepping scheme of the required nominal order of 
accuracy, but the interface coupling scheme of the same order of accuracy is also required. This also shows the importance of 
verification studies and convergence tests on the fully coupled FSI problem. We also note a slightly lower rate of a temporal 
convergence of drag in both schemes compared to a displacement, which can also be seen in Fig. 20. The reason for this 
reduction might be associated with the fact that the drag is related to the velocity variables rather than displacements, and 
the nominal order of accuracy of the Newmark scheme is lower for velocities than for displacements.

Temporal dynamics. To evaluate the effect of spatial and temporal refinement on the dynamics of the quantities of interest, 
we plot the temporal series of the vertical midpoint wall displacement and the total flow drag on the compliant surface in 
Fig. 17 for the different meshes. For the displacement evolution, Fig. 17(a) demonstrates that all the cases with different 
levels of h-refinement, p-refinement and time step, show essentially identical values. The drag evolution shown in Fig. 17(b) 
is, however, more sensitive to a spatial refinement, showing that it requires finer meshes and/or higher polynomial orders 
to converge the values of drag. From Fig. 17(c), Fig. 17(d), it cal also be seen that the meshes with one and two layers of 
solid elements produce identical results, testifying that the two layers of solid elements provide an adequate resolution for 
the solid. Since displacement is less sensitive to a spatial refinement compared to a drag, this means that in the situations 
where primarily a displacement of the structure is of interest, the mesh size (the total number of degrees of freedom) could 
be reduced to save cost.

This high sensitivity of drag to a spatial resolution can explain why it is difficult to obtain ideal convergence slopes 
with h- and p-refinements across a large range of h, p levels in the FSI problem, i.e., for meshes that differ significantly in 
their spatial resolutions, as observed in Fig. 19. Since the drag force is the one that drives the motion of the solid, which 
in turns drives the fluid, the spatial resolution of drag now also effects the temporal dynamics, and not only the spatial 
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Fig. 20. Temporal convergence for the compliant wall channel 3D FSI benchmark. Meshes M2(P 4,0.03125)–M2(P 4,0.125) are used.

Fig. 21. Effect of tolerances on the solution errors for compliant wall channel 3D FSI benchmark.

accuracy. A slightly different temporal dynamics at different spatial resolutions results in a fact that the values that are 
being compared are now also shifted in time. For the error estimates such as these obtained with Eq. (81), Eq. (82), when 
the errors are compared at the same time step, the outcome is that the temporal differences introduced by different spatial 
resolutions now implicitly enter the spatial convergence results, which makes it difficult to separate temporal and spatial 
errors, and obtain an anticipated spatial convergence rate across a wide range of resolutions. It would be interesting to 
devise improved error metrics, for example, using a temporal convolution of the values at different spatial resolutions, to 
assess the applicability of such enhanced error measures to the coupled multi-physics problems, which will be investigated 
in the future work.

5.2.4. Tolerance study
We now turn our attention to the effect of the FSI convergence criteria κ and the fluid solver tolerance κ f on the L2

and L∞ errors of the quantities of interest in the FSI problem. It is important to quantify this effect, since higher tolerances 
can be associated with faster solver execution times but can incur larger global errors. Understanding the tradeoff is helpful 
for practical applications. In the current study, the mesh M2(P 4,0.05) is used with various values of the FSI and fluid solver 
tolerances κ, κ f ranging from 10−2 to 10−6 as given in Table 5. Solid solver tolerance is fixed at 10−12 in all the studies. 
The reason we do not vary the solid tolerance is because the solid iterations account for a small fraction of the total 
computational time of the coupled FSI solver, due to a dominance of the computational cost by the pressure Poisson solution 
of the Navier-Stokes equations, and due to a relatively small size of a solid domain compared to a fluid domain. Keeping a 
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Fig. 22. Effect of tolerances on the number of solver iterations for compliant wall channel 3D FSI benchmark.

solid solver tolerance at a very low level as in the current tests ensures that the errors from the iterative convergence of 
the solid solver are minimized, at essentially no additional cost.

The L2 and L∞ errors for the vertical wall displacement and the total flow drag on a compliant surface at various fluid 
and FSI tolerances are shown in Fig. 21 (note that there is no data point for the (κs, κ f , κ) = (10−12, 10−6, 10−6) case, which 
corresponds to the reference mesh, and for which the error is identically zero). One can see that for both displacement and 
the drag, the effect of the fluid solver tolerance κ f is negligible as long as the tolerance does not exceed the value of 
κ f = 10−3, which means that this value of the fluid tolerance should in general be sufficient for convergence. The strong 
effect of the FSI tolerance κ is pronounced for both quantities, with errors decreasing by three to four orders of magnitude 
when κ is reduced from 10−2 to 10−6. However, for the lowest fluid solver tolerance κ f = 10−2, the effect of tightening the 
FSI solver tolerance κ is of diminishing return, since the error is then dominated by a poor fluid solver convergence and is 
not improved by a stronger fluid-solid coupling.

To assess the increase in the computational cost associated with the tightening of the convergence criteria, the number 
of iterations taken by the component solvers and by the FSI interface coupling routine in response to different values of 
the convergence tolerances is shown in Fig. 22. The number of iterations taken by the solvers at each time step is averaged 
over the entire time of the simulations, thus an averaged number of iterations is presented. We see that, as expected, the 
number of FSI iterations do not depend on the fluid solver tolerance κ f , while increasing the FSI tolerance κ from 10−6

to 10−2 reduces the average number of iterations from ten to four, thus reducing the global solver cost by approximately 
2.5 times. Fig. 22(b) shows that the number of solid solver iterations depends neither on the fluid tolerance nor the FSI 
tolerance, as expected. The number of fluid solver iterations does not depend on the FSI tolerance either, however, it does 
depend on the fluid tolerance. While Fig. 21 showed that the fluid tolerance can be increased from 10−6 to 10−3 without 
affecting the accuracy, Fig. 22(b) shows that this increase will decrease the number of iterations from four to two which will, 
essentially, cut the total computational cost by two, since the cost of the fluid solver, due to a Poisson equation solution, far 
exceeds that of the solid solver. Therefore, for practical FSI implementations where a cost versus accuracy tradeoff may be 
considered, we recommend increasing the fluid solver tolerance while keeping the FSI tolerance as low as possible.

6. Fluid-structure interaction in a 3D turbulent channel with a compliant wall

6.1. Problem formulation

In this section, we extend the developed FSI solver to a Direct Numerical Simulation of an interaction of a turbulent 
flow with a nonlinearly elastic compliant wall. Previous computational studies of the interaction between the turbulent 
flow and an elastic surface were primarily confined to a zero-thickness spring-backed membrane model for the solid ma-
terial [40,61,62]. In addition to being a very simplistic model that neglects many important effects pertinent to structural 
dynamics related to multi-dimensionality and non-linearity, the spring-backed membrane model does not allow for lon-
gitudinal wall motions, which have been found to be important [63], especially during the interaction with turbulence, 
where the properties of the fluctuating field are crucial in determining the global structure of turbulence, and their artificial 
suppression might draw an incomplete picture. In a recent computational study, Rosti and Brandt [41] used a monolithic 
FSI approach combined with a 2nd-order finite difference scheme to model the interaction of an incompressible flow in a 
channel with a hyperelastic Mooney-Rivlin material wall. With a monolithic approach, an FSI interface is not resolved, but 
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Table 6
Number of elements and the polynomial order of approximation for the two meshes used in a 
turbulent channel flow case.

Mesh Fluid/Solid Number of Elements, (nx,ny ,nz) Polynomial order, N

M1
Fluid (50,10,10) 7
Solid (50,2,10) 7

M2
Fluid (60,10,12) 7
Solid (60,2,12) 7

Table 7
Mesh resolution in wall units in undeformed configuration for the two fluid meshes used in the turbulent channel flow case based on uτ of the corre-
sponding rigid wall case. Wall units are defined as L+ = L uτ /ν , with uτ = √

τw/ρ being wall friction velocity, τw is wall shear stress, Reτ = uτ H/ν . �L+ , 
min corresponds to a minimum distance between the grid points across all elements and GLL points, while �L+ , max corresponds to a maximum distance. 
Difference in uniform x and z directions is solely due to a non-uniform GLL points distribution.

Mesh Reτ �X+ , min �X+ , max �Y + , min �Y + , max �Z+ , min �Z+ , max

M1 Fluid 179.9946 2.9015 9.4695 0.6245 18.0867 7.2538 23.6711
M2 Fluid 177.8704 2.3906 7.7978 0.6171 17.8731 5.9729 19.4928

implicitly embedded into the computational cells analogously to the methodology of immersed boundary techniques [64]. 
This leads to a low-order representation of the interface and the surrounding near-wall velocities, which can create some 
numerical deficiencies in a case of a turbulent flow.

The presented simulation is the first attempt to apply a high-order interface-resolving FSI solver to a Direct Nu-
merical Simulation of a turbulent channel flow interacting with a nonlinear, hyperelastic wall. The setup of the prob-
lem is similar to the one described in the previous section. A fluid flow in an originally rectilinear box of the length 
(Lx, L y, Lz) = (4π H, 2H, 2π H) interacts with a nonlinearly elastic solid layer of the thickness D = 0.2H at its top boundary. 
The boundary conditions for the fluid are: 1) periodic in streamwise and spanwise directions, 2) a no-slip wall enforced at 
the bottom boundary Y = −H , 3) fluid-structure interface at the top wall Y = H . A forcing function is applied in a stream-
wise direction to keep the mass flow rate constant [57]. The Reynolds number of the flow based on the bulk mean velocity 
U and a channel half-width H is set as Re = U H/ν = 2800, which for channel flow is in the turbulent regime [65]. An 
illustration of the domain geometry for the fluid and the solid layers and the overall problem setup is presented in Fig. 23.

A fully-developed turbulent channel flow with rigid walls is first obtained before the interaction with a compliant solid 
is initiated. To trigger the transition to turbulence in a channel, the following initial conditions for the fluid flow are speci-
fied [66]

ux/U = 5(1 − ( ỹ)4)/4 + 0.3 cos(12z̃)e0.5−32.4(1−| ỹ|)2
(1 − | ỹ|),

u y/U = 0,

uz/U = 21.6 sin(12x̃)e−32.4(1−| ỹ|)2
(1 − | ỹ|),

(84)

where {x̃, ỹ, ̃z} = {x/H, y/H, z/H}. Initial perturbations are necessary in this case, since discretization errors in a spectral-
element method are intrinsically low and, by themselves, are unable to trigger transition to turbulence. Additionally, the 
channel flow with the current relatively low Reynolds number is linearly stable. The specified initial conditions correspond 
to an initial perturbation in a form of elongated high- and low-speed streaks with superimposed spanwise velocity pertur-
bations. According to a recent research, this type of perturbations triggers auto-generating mechanisms of turbulence, via 
which the turbulence is initiated and sustained [67–69].

The simulations are run on two meshes. The number of fluid elements for the first mesh is (n f ,x, n f ,y, n f ,z) =
(50, 10, 10), and for the second mesh it is (n f ,x, n f ,y, n f ,z) = (60, 10, 12), while the polynomial order of N = 7 is used 
for both meshes for a spectral element discretization in space, see Table 6. The element spacing in the y direction is given 
in [66], while the element sizes in x and z directions are uniform. Note that [66] used the same spectral-element code 
Nek5000 in their study of a turbulent rigid-wall channel flow with Re = 2800. After running the decoupled fluid solver 
for 200H/U time units, turbulence becomes statistically stationary [66]. Turbulent statistics are subsequently gathered over 
50H/U time units. Before moving on to the FSI study, turbulent statistics were validated against the results of Sprague et 
al. [66] and Kim et al. [65], and a good agreement was obtained for both meshes (not shown here). Based on the calculated 
wall shear stress, the obtained grid resolution in wall units is documented in Table 7 for the two meshes.

After a simulation time of 250H/U time units, the fluid-structure interaction is initiated. An elastic solid layer added 
on top of the fluid domain covers the whole extent of the top channel boundary and has the dimensions of (Lx, L y, Lz) =
(4π H,0.2H,2π H). A solid layer is modeled by a nonlinear hyperelastic St. Venant-Kirchoff material model as described in 
Sec. 2.1.1. The boundary conditions for the solid are: 1) periodic in streamwise and spanwise directions, 2) fluid-structure 
interface at the lower solid boundary Y = H , 3) clamped wall at the top solid boundary Y = 1.2 H . The solid boundary 
locations are given in an undeformed configuration. The number of elements for the solid are: (ns,x, ns,y, ns,z) = (50, 2, 10)
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Fig. 23. FSI in a turbulent channel domain geometry and problem setup, including the computational grid for the fluid with GLL points. The blue layer on 
top corresponds to a hyperelastic solid coating. The snapshot of the streamwise fluid velocity (refer to the colorbar for values) shows a streamwise-spanwise 
view of high- and low-speed streaks in a turbulent channel flow. Results with the mesh M1 are shown.

Fig. 24. Instantaneous streamwise vorticity and the deformation of the fluid-solid interface with mesh M1 at a time 26H/U , color bar from -10 (blue) to 
10 (red).

for the first mesh, (ns,x, ns,y, ns,z) = (60, 2, 12) for the second mesh, with the polynomial order of N = 7 for both meshes, 
as documented in Table 6. The element sizes are uniform in all three directions. The material properties for the solid are 
set as density ρs = 10 ρ f , Young’s modulus as E = 5 ρ f U 2, and Poisson’s ratio as νs = 0.3. These material properties can be 
converted into λs and μs as Lamé constants in a constitutive relation, Eq. (9). A measure of the wall inertia relative to the 
fluid is often presented as the non-dimensional parameter Cm = (ρs D)/(ρ f H). The higher Cm is, the heavier is the wall and 
the fewer interactions are expected between the solid and the fluid, while for a lower Cm the situation is the opposite. In 
the current simulations, the value of Cm = 2 is used, which corresponds to a moderately light wall considered in previous 
theoretical studies [70] and in simulations [40]. Another material parameter that characterizes a potential of the structure 
to stimulate strong coupling processes with the fluid is the shear wave speed. Previous studies have shown that a strong 
interaction can be expected if the elastic shear wave speed is less than the flow speed [39,71]. Shear wave speed for the 
current solid is ct = √

E/(2 (1 + ν)ρs) = 0.438 U , which corresponds to a soft wall capable of interactions with the fluid. 
The initial conditions for the solid are at zero displacements, velocities and acceleration. The FSI simulations are advanced 
with the time step δt = 0.005 H/U , which leads to a Courant number of approximately 0.4. Three FSI iterations were found 
sufficient for stability.

6.2. Results

Although the solid material surface in contact with the fluid is originally flat, a fluid-solid interface soon develops small-
scale deformations from the influence of the fluctuating pressure and viscous forces in a turbulent flow. Fig. 24 shows a 
visualization of the instantaneous streamwise vorticity and a top surface deformation at a time 26H/U from the beginning 
of the FSI simulations, where the small-scale wrinkles originating in the top surface deformation field can be observed. The 
unsteady interaction processes between the fluid flow and a hyperelastic compliant wall significantly change the structure 
of turbulence as can be seen from Fig. 25(a) and Fig. 25(b), where streamwise vorticity slices at Y + = 5 from the lower 
and upper walls are presented to show the difference between the bottom rigid and the top flexible surfaces in the current 
simulations at a time of 26H/U . Note that the location of the slices for visualization refers to an undeformed configuration. 
It can be seen that elongated quasi-streamwise vortices typical of a classical near-wall turbulence in a presence of a rigid 
wall [72] (see Fig. 25(a)) are broken down by a flexible wall in Fig. 25(b), and a significant amount of small-scale vorticity 
is generated, forming structures that are no longer primarily aligned with the mean flow direction.

We next present the time series of the total flow drag defined in Eq. (77) for both the bottom and top walls for the 
FSI and no-FSI turbulent channel flow cases in Fig. 26 for the two meshes. Without FSI, the flow drag among the lower 
and upper walls exhibits similar, relatively smooth time dynamics. We also note low-frequency fluctuations associated with 
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Fig. 25. Instantaneous snapshots of streamwise vorticity at Y + = 5 from the lower and upper surfaces in a turbulent channel flow with mesh M1 at a time 
26H/U , color bar from -2 (blue) to 2 (red). Note the change in the color bar compared to Fig. 24. The location of the planes for visualization refers to an 
undeformed configuration.

Fig. 26. Comparison of the total flow drag for the lower and upper walls with and without FSI in a turbulent channel flow with the two meshes. Time is 
normalized with H/U .

the dynamics of the near-wall turbulent coherent structures, which, in low-Reynolds number flows as simulated here, 
are relatively large in size relative to the channel dimensions and exert a noticeable long-lasting influence on the surface 
drag [73,74], which can also explain the difference in the lower and upper surface drag curves, exposed to their own 
local near-wall structures. The drag on the upper wall shows completely different dynamics when FSI is introduced. Low-
frequency motions still persist, but, for the upper elastic wall, these motions are further superimposed by high-frequency 
fluctuations due to a small-scale turbulence, potentially caused by surface wrinkles, as can be seen in Figs. 24, 25. The two 
meshes show a conceptually similar dynamics of the drag force at the rigid and elastic walls in an FSI flow. The quantitative 
difference between the drag values obtained with the two meshes can be attributed to the same mechanisms that cause 
the time series of drag on the lower and upper walls to differ in the rigid-wall channel, i.e., the low-frequency dynamics 
of coherent structures, which is sensitive to any perturbation, including the difference in mesh. Variability in local behavior 
due to coherent structure dynamics is not expected to influence the flow statistics. However, long simulation times are 
required for collecting reliable turbulent flow statistics, which might be longer in the presence of fluid-structure interaction 
compared to a rigid-wall case. Further studies of the turbulent fluid-structure interaction case, including investigation of the 
turbulent flow statistics and structure in the presence of a flexible wall, as well as the influence of the grid resolution on 
the statistics in the turbulent FSI case, will be presented in the future papers.

7. Conclusions

This paper presents a high-order in space and second-order in time computational methodology for a solution of a 
strongly-coupled fluid-structure interaction problem. The methodology is based on a spectral-element formulation of both 
the solid and the fluid equations. Solid equations adapt a geometrically nonlinear framework using a St. Venant-Kirchoff 
material model, while fluid equations solve an incompressible Navier-Stokes equations system on deforming meshes based 
on Arbitrary Eulerian Lagrangian formulation. The coupling is accomplished via a fixed point iteration approach with Aitken 
relaxation, which is known to be a robust methodology that allows to achieve stable results in the presence of an added 
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mass effect [75,76]. In addition to a development of a high-order solver itself, we have also proposed a comprehensive 
verification methodology to demonstrate a high-order spatial and a second-order temporal accuracy of the approach in 
a consistent manner, which consists of h-, p- and temporal refinement tests for both the component solvers, and the 
coupled fluid-structure interaction problem formulation. Additionally, we have demonstrated a good performance of the 
methodology on commonly accepted fluid-structure interaction benchmarks, including a flow-induced vibration of a two-
dimensional cantilever beam attached to a circular cylinder [33], and a pressure-driven flow in a three-dimensional pipe 
with flexible walls [38].

A polynomial spectral accuracy of the approach with the corresponding h- and p-refinement tests, and the expected 
second-order temporal convergence of the method, was first demonstrated on an elastostatics and elastodynamics solid 
formulation using a method of manufactured solutions, and subsequently on a solution of the incompressible fluid flow 
equations against an analytical solution of convecting Walsh’s eddies [58]. For the fluid solver, following a preliminary 
conclusion achieved by Formaggia and Nobile [46] on a model problem of a linear advection-diffusion equation, it was 
demonstrated on an example of the full Navier-Stokes equation system that the 2nd-order BDF scheme in a conservative 
formulation with a linear in time geometry update (IE-ALE scheme) achieves only a 1st order temporal accuracy on de-
forming meshes unless the Geometric Conservation Law (GCL) is satisfied. It was also shown that the expected 2nd-order 
accuracy is recovered if the GCL is implemented. It was also demonstrated for the first time that when the IE-ALE scheme 
with GCL is applied to a fully coupled FSI problem, where both the fluid and the solid equations are discretized with the 
second-order schemes (BDF2 for fluid and Newmark for solid), the order of accuracy of the coupled problem reduces to one. 
To alleviate this problem, a new ALE solver was developed that uses a Crank-Nicholson type geometry update, matching 
the solid interface update from the Newmark code. Note that GCL is not needed with the CN-type update, because in this 
case the ALE geometry is updated with the 2nd-order accuracy. A global 2nd-order accuracy of the approach was verified 
on a fully coupled FSI problem using self-convergence tests. The developed implementation ensures a perfect match of both 
the interface velocities and displacements between the fluid and the solid solver, thus ensuring a stable and consistent 
formulation in the considered case of large displacements allowed by a geometrically nonlinear solid formulation.

To allow for a consistent testing of a high-order method on a fully coupled FSI problem, a new computational benchmark 
has been developed, which consists of a fluid flow in a three-dimensional channel bounded by one rigid and one flexible 
wall. High-order convergence of spectral element methods can only be achieved for smooth solutions. Special care has 
thus been taken to develop a benchmark which ensures smoothness of a fully coupled FSI solution in a time-dependent 
formulation. This involved specification of initial and boundary conditions that are consistent throughout the coupled fluid 
and solid domains, and are smooth in space and time. The new proposed framework allowed us to demonstrate, for the first 
time, a possibility of obtaining a high-order spatial convergence with h- and p-refinement on a fully coupled FSI problem, 
and also confirmed an expected second-order temporal convergence of the CN-ALE scheme. The convergence study of the 
fully coupled problem also exemplified a potential need to revisit the definition of the error norms currently employed in 
single-physics problems, systematically assess their applicability to multi-physics problems, and, perhaps, devise improved 
error metrics for the FSI problems, to be explored in the future work.

The benchmark was also utilized to assess the influence of the iterative solvers’ tolerances on the global error, which 
was not highlighted before. A conclusion from this study was that the fluid solver tolerance does not significantly affect the 
results and can be safely set to a relatively high number resulting in only two fluid solver iterations. However, a tolerance 
of the FSI solver can have a significant impact on the results, generally reducing the global error by an order of magnitude 
if the tolerance is reduced by an order of magnitude. Developing strongly-coupled FSI approaches that do no rely on fixed-
point iterations, including generalized Robin boundary conditions, such as some recent attempts published in [28–32], is 
therefore a promising avenue to proceed and is worth of an investment, which will be considered in our future work. 
The developed high-order FSI methodology was ultimately applied to a Direct Numerical Simulation of a turbulent flow 
in a channel interacting with a hyperelastic compliant wall. This is the first attempt of applying an interface-resolving FSI 
methodology to a fluid-structure interaction problem involving a turbulent flow and a finite-thickness elastic wall. An ability 
to predict near-wall turbulent fluctuations with high-order accuracy in the presence of a flexible wall opens up further 
avenues for research: for example, in the design of passive compliant surfaces capable of controlling near-wall turbulence, 
which may reduce drag or enhance turbulent mixing and heat transfer, for a variety of engineering applications.
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