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The goal of this paper is to determine the optimum modes of aquatic locomotion for a
tuna-like thunniform swimmer under water, and study the performance of paired thunniform
swimmers. The computational framework is developed that couples a high-order fully-resolved
numerical simulation of self-propelling flexible thunniform swimmer with the gradient-free
optimization procedure based on evolutionary algorithm. The optimization is performed to
find the optimum kinematic gaits of a single swimmer which are cost-efficient in start-up
propulsion or maintaining constant speed. The performance of a fish pair is investigated
under a selected swimming mode with various lateral separation distance under in-phase and
anti-phase configuration.

I. Introduction
Understanding the mechanisms of bio-inspired aquatic locomotion is crucial for design and control of autonomous

engineered systems capable of performing various scientific and defense-related missions, such as oceanic observation,
data gathering, hull inspection, surveillance and combat support. Energy consumption, as well as efficiency then play an
important role in robot fish design.

In nature , among the fish locomotion, thunniform group contains high-speed and long-distance swimmers such
as tunas and lamnid sharks. By bio-inspiration, many researchers try to build various robot fish based on thunniform
swimmers such as soft-robot thunniform fish [1, 2]. Their work was able to overcome many difficulties in designing a
fish-like robot while the optimized allowable swimming mode is still unknown. Although the swimming motion for the
robot in reality has many constraints due to the design of engineered system or the mechanisms itself, but it is still
captivating to figure out the theoretical idealized swimming motion under certain physical constraints. To achieve the
goal of optimizing the swimming efficiency of a start-up propulsion or maintaining a high-speed steady-state swimming
for a single fish, a Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimization approach [3] is used to
search for the ideal swimming modes.

For collective operations in robotic swarms, it is important to know the mechanisms of interaction between the agents,
and how these interactions influence the overall efficiency of a swarm. In particular, for the underwater propulsion, the
life aquatic animals are known to organize themselves into specific swimming patterns within a larger collective unit, a
school or a shoal [4–6]. The question of what determines these specific patterns in a fish school has been intriguing the
researchers for years, with no obvious answer yet apparent.

The early studies have attributed the motives of biological self-organization in fish schools to purely social functions,
such as foraging [7], defense from predators [8, 9], and mating [6]. First mathematical attempts to model collective
behavior in fish schools appeared in early eighties in which the interaction rules between the agents were based on
entirely behavioral principles, i.e. the rules of repulsion, attraction and alignment with the neighbors [10–12]. While
these models were able to reproduce a general geometrical shape of fish schools [13, 14], many questions remained
unanswered, for example related to the difference in preferred patterns among fishes swimming with different velocities,
larvae versus adult fish, and different fish species [15, 16].

Furthermore, an evidence has been emerging of the importance of hydrodynamic effects in the principles of schooling,
such as energetics and efficiency of swimming [4, 17, 18]. Attempts to incorporate potential-flow type approaches
to include hydrodynamic effects into the collective swimming models have appeared [19, 20]. The potential flow
models are still far from being a realistic approximation of the fluid environment in which fishes interact, furthermore,
they neglect important effects related to the fluid viscosity, fish morphology, kinematics and inertia. Fully-resolved
Computational Fluid Dynamics (CFD) simulations based on the solution of the Navier-Stokes equations are capable
of accounting for these effects. A number of researchers have recently used this approach to study the mechanisms
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of biolocomotion and the fluid-body interactions in relation to a single fish swimming [21–23]. Several optimization
studies for single anguilliform swimmers can also be acknowledged [24–26], while optimization studies for the multiple
swimmers and their extension to a thunniform motion are not yet available, to the authors knowledge.

The current paper aims to fill the gap in knowledge of identifying the optimum kinematic gaits for a single thunniform
fish under water environment as well as the optimum fish-pair configurations, including the effects of the vortex-wake
interactions, synchronization, and the separation distance on the mechanisms of paired swimmers.

II. Modeling Framework

A. Geometrical and Kinematic Model of Thunniform Fish
The geometry of a two-dimensional thunniform fish is modeled according to the top view cross-section of a

three-dimensional thunniform fish from [1, 2] as

y(x) = r1 sin(r2x) + r3 sin(r4x), (1)

where r1 = 0.055l, r2 = 2π
1.25l , r3 = 0.08l, and r4 = 2

l . The function above describes the geometry of the whole body
length apart from the tail, so the length l in Eq. (1) corresponds to the total body length minus the length of the tail. x
coordinate is in the swimming forward direction while y is in the lateral direction. Eq. (1) corresponds to the upper
curve of the body, yu (x), while the equation for the lower curve of the body would be simply yl (x) = −yu (x), since the
geometry is symmetric around its middle line. The total dimensional length L of the fish (including the tail) is chosen
from a realistic soft robotic tuna [1] to be 0.3m. To model a sharp tail, an extended length is implemented linearly from
0.25m to 0.3m, and thus l is 0.25m in Eq. (1). The original static shape of the thunniform fish model is presented in
Fig. 1(a).
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Fig. 1 Geometrical model of the fish.

The typical lateral body locomotion with negligible head motion (recoil) [1, 2, 27, 28] of a fish is described by its
middle line position as

ym (x, t) = [c1
x
L
+ c2(

x
L

)2] sin(2π(
x
λL
− f t)), (2)

where c1 and c2 are dimensional undetermined linear and quadratic wave amplitude envelope, λ is the body wave length
which is 1.1 for a thunniform fish suggested in [1] and f is the body wave tail-beat frequency. Although the tail-beat
frequency has a potential positive correlation with the swimming speed and propulsion efficiency, here we have chosen
to constraint f to be equal to 1Hz. When the middle line of a fish body moves, the upper and lower part of the body
are considered to move with the same velocity in lateral direction only. Thus thrust would be purely passive since
the undulatory work is done in its orthogonal direction which has zero contribution to a forward motion. A family of
possible swimming modes of a thunniform fish in this paper are then described by {c1, c2}. One may also notice that the
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initial position of the middle line from Eq. (2) is not the same as the original static geometry presented in Fig. 1, nor it
represents an actual fish position at any time of motion. Thus a virtual ramp is set up before the start of the simulation to
move the geometry to its starting position.

For a fish pair simulation, the geometry and the kinematic description are the same as for the single fish simulation.
A second fish is placed to swim adjacent to the first fish in the lateral direction, so that they swim in parallel with
their heads lined up. In the current paper, we consider their paired motion configuration as being either in-phase or in
anti-phase, with various values of their lateral separation D measured as the distance between their middle lines in the
undisturbed configuration of Fig. 1(1).

B. Computational Fluid Dynamics Solver
To resolve the fluid-solid interface of the undulating fish interacting with the fluid flow, a body-fitted approach is used

in this paper which solves incompressible Navier-Stokes equations in the Arbitrary Eulerian Lagrangian formulation. It
is spatially discretized with high-order spectral-element method (SEM) in staggered PN − PN−2 formulation [29, 30].
Pressure p and velocity u are solved iteratively [31] and are decoupled through a standard operator splitting approach
stated as:

βk ū
δt
−
µ

ρ
∆ū = −

k∑
j=1

βk− j

δt
un+1− j − [(ui − w) · ∇ui]n+1 −

∇pn+1
i

ρ
, (3)

∆(pn+1
i+1 − pn+1

i ) = ∇ · (
βk ū
δt

), (4)

un+1i+1 = ū −
δt
βk
∇ · (pn+1

i+1 − pn+1
i ). (5)

Here, δt is the time step size, βk is the backward differentiation coefficient of order k, w is the mesh velocity
calculated algebraically from an a-priori specified moving pattern of the fish middle line from Eq. (2), n is the time step
index. To solve for the convective term and the pressure implicitly, a sub-iteration loop (index i) is employed [31, 32] to
repeat the splitting operators Eq. (3), (4), (5) by updating un+1i and pn+1

i until |u
n+1
i+1 −u

n+1
i |2

|un+1i |2
, and |p

n+1
i+1 −p

n+1
i |2

|pn+1
i |2

converge to

a certain tolerance. The tolerance is set here to be 10−6 for velocity and 10−5 for pressure, while the convergence is
typically achieved within three to five iterations. Sub-iteration also alleviates the Courant stability constraint, allowing
one to use larger time step sizes [31, 32]. For an additional stabilization, an explicit modal filtering with the weight of
0.01 is applied to the last two modes of the polynomial approximation [33, 34].

C. Self-Propulsion
When the fish begins to execute an undulatory motion according to Eq. (2), it gains thrust and moves in the direction

of the thrust force. In this paper, we consider only the forward motion for self-propulsion [22, 27], with the lateral
motion being fixed and not affected by swimming. It corresponds to a case when the fish can adjust its muscles to
leverage the fluid force around it, so it can maintain its straight heading direction. Such adaptation does not neglect any
energy consumption, as the input power is associated with the adapted flipping force.

In a single fish case, a tuna like fish is placed in the middle of a 2D box with the dimensions of 12L × 4L, with an
inlet boundary located at a distance L, and an outlet boundary at a distance 11L, from the head of the fish, while the
upper and lower boundaries employing symmetry boundary conditions are 2L away from its initial body middle line. To
model the fish self-propulsion, we adjust the incoming fluid velocity at the inflow boundary rather than physically move
the fish forward.

In a fish pair case, the settings are similar, but now the two fishes are separated by the distance D between their
original middle lines. The domain, for each case considering a different value of the separation D, is thus extended in y

direction to keep the vertical symmetric boundaries at a distance 2L away from each fish. Additionally, the fishes are
propelled as a pair, corresponding to their combined thrust forces and combined masses, again, by adjusting the velocity
of the incoming flow. We argue that, as in a single fish case, this setup implicitly considers the fishes self-adjustment,
through the muscle power, which allows them to maintain their relative position to each other, which is accordingly
reflected in their input power.

Swimming speed Un+1 at time n + 1 is then determined by the total propelling force Fn+1
x acting on the fish

surface in x direction from a fish swimming locomotion. Discretizing the Newton’s second law with implicit Euler, the
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self-propelling speed equation can be stated as

Un+1 = Un +
Fn+1
x

m
δt, (6)

where m is the mass of one fish, or the combined mass of a fish pair. The effect from the moment is neglected in the
present work similar to [22]. The fluid environment is considered to be water so the density of both fluid and fish is
considered to be 1000 kg/m3 and the dynamic viscosity µ is 1 × 10−3 kg/(m · s). Implicit Eq. (6) is solved through a
fixed point iteration with Aitken relaxation [31, 35, 36].

D. Optimization

1. Geometric Constraints
To consider the optimization problem for the swimmingmotion, we need to specify the constraints for the optimization

parameters {c1, c2} from Eq. (2), which are set to allow for physically realizable swimming motions as

C =




|c1 + c2 | ≤ 0.1L;

−
c21
4c2 ≤ 0.1L;

c2 ≤ 0.
(7)

The constraints have the following physical interpretation [1, 2, 22, 37]:
• The maximum amplitude of the tail motion is set to be 0.1L.
• The maximum amplitude of the body motion can not exceed 0.1L.
• The tail is flapping down at the start-up time t = 0. The flapping up configuration represents a symmetry
transformation of the current configuration and is omitted from the optimization problem due to redundancy.

2. Swimming Efficiency
In this paper, we consider two optimization cases, corresponding, accordingly, to a propulsive efficiency and an

energy conversion efficiency. Propulsive efficiency is defined as

η1(c1, c2, t1) =

∫ t1
0

∮
body

−σ · nx ·Udx dt∫ t1
0

∮
body

−σ · ny · vdx dt
, (8)

and the energy conversion efficiency is defined as

η2(c1, c2, t2) =

∫ t2
t2−T

1
2mU2dt∫ t2

t2−T

∮
body

−σ · ny · vdx dt
. (9)

Here T = f −1 = 1 s is the tail-beat period, σ is the total Cauchy stress tensor which includes viscous and pressure forces,
n = {nx, ny } is the outer unit normal vector on the body surface, v(x, t) = ∂ ym (x, t)/∂ t is the lateral surface velocity
due to undulation, and U (t) is the propulsive forward velocity. Swimming modes {c1, c2} correspond to “black-box”
optimization parameters and are not explicitly present in the cost function definition of Eq. (8), (9), but rather their
influence on the value of the cost function is obtained via the CFD simulation.

Both t1 and t2 could be any values, but in the current optimization procedure, t1 is chosen to be 6T and t2 is chosen
to be ts , which is a time required for a fish to reach a steady-state swimming motion, and is case-dependent (different for
any particular swimming mode {c1, c2}). The steady-state motion is defined as the state where the mean of the forward
propulsive fish velocity U in every period of tail beating seizes changing from cycle to cycle.

Propulsive efficiency represents the ratio of the total energy gained from swimming versus the total energy input due
to undulation when the fish starts to swim from rest. It shows how energy can be transferred efficiently to a pure kinetic
energy, indicating a fast and cost-efficient swimming motion during the start up.

After certain number of periods of swimming, fish will reach its steady state, when its mean propulsive velocity in
one period becomes unchanged. It means that the thrust from undulation compensates the fluid drag, and the kinetic
energy of that fish is balanced. When the steady state is reached, the energy conversion efficiency shows the cost
effectiveness of maintaining such a speed.
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3. CMA-ES Optimizer
To find the maximum values of the two swimming efficiency coefficients η1 and η2 under constraints C from Eq. (7),

a gradient-free optimization procedure based on a Co-variance Matrix Adaptation Evolution Strategy (CMA-ES) [3]
approach is used to search for the best swimming modes from varying c1 and c2. The algorithm is based on the
principles of biological evolution. A population is given initially as the input and three operations are defined to modify
the population members: recombination/crossover, mutation and selection. New candidate solutions are sampled
according to a multivariate normal distribution in the Rn . Recombination amounts to providing a new mean value for
the distribution. Mutation amounts to adding a random vector, a perturbation with zero mean. Pairwise dependencies
between the variables in the distribution are represented by a covariance matrix. The covariance matrix adaptation is a
method to update the covariance matrix of this distribution.

III. Results

A. Propulsive Efficiency Optimization
The single fish propulsive efficiency optimization problem of Eqs. (7) and (8) has been solved with the evolutionary

algorithm CMA-ES [3] by 7 cycles of the optimization procedure when t1 = 6T is fixed. The number of samples
(population size) is 6 due to the minimum requirement for two variables. The description of the optimization procedure
is presented in Fig. 2 illustrating the samples distributions, problem constraints, and the optimization trend.

To judge the performance of the optimization procedure, we can define the convergence rate for the algorithm as

ε =

������

η(ci+11 , ci+12 , t) − η(ci1, c
i
2, t)

η(ci1, c
i
2, t)

������
· 100%, (10)

where the tuples {ci1, c
i
2} are the mean values for distribution after the ith cycle of the optimization procedure, t stands

for 6T in the propulsive efficiency optimization. The performance of the optimization procedure for the propulsive
efficiency optimization is presented in Fig. 3, showing fast convergence of the algorithm as the new suggested mean
{c1, c2} values are used for the swimming mode.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

c
1
 (L)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

c
2
 (

L
)

CMA-ES optimization

1st 6 samples

2nd 6 samples

3rd 6 samples

4th 6 samples

5th 6 samples

6th 6 samples

7th 6 samples

1st 6 samples mean

CMA-ES 1st new mean

CMA-ES 2nd new mean

CMA-ES 3rd new mean

CMA-ES 4th new mean

CMA-ES 5th new mean

CMA-ES 6th new mean

Objective Maximum

(a) Total cycles

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02

c
1
 (L)

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

c
2
 (

L
)

CMA-ES optimization

1st 6 samples

2nd 6 samples

3rd 6 samples

4th 6 samples

5th 6 samples

6th 6 samples

7th 6 samples

1st 6 samples mean

CMA-ES 1st new mean

CMA-ES 2nd new mean

CMA-ES 3rd new mean

CMA-ES 4th new mean

CMA-ES 5th new mean

CMA-ES 6th new mean

Objective Maximum

(b) Last four cycles

Fig. 2 CMA-ES procedure for single fish propulsive efficiency.

The maximum efficiency converges to {c1, c2} = {−0.0987L,−0.0013L} with a convergence rate of 0.4% and the
maximum efficiency found is 0.1957 when t1 = 6T . From the swimming mode {−0.0987L,−0.0013L} (shown in
Fig. 1(b)), one could tell that it reaches the maximum tail flipping and the quadratic part of the amplitude envelope is
quite small. It shows that a brutal linear flapping might be the best way to have a high propulsive efficiency.
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Fig. 3 Single fish propulsive efficiency optimization performance from consecutive suggested mean values for
distribution. Values in % correspond to the convergence coefficient ε defined in Eq. (11).

B. Energy Conversion Efficiency Optimization
Similar to a propulsive efficiency optimization, energy conversion efficiency optimization problem of Eqs. (7), (9),

is solved with 4 cycles and is shown in Fig. 4. The samples size is also 6 but t2 = ts , with the exact value varying
depending on a particular swimming mode. The definition for the convergence rate is the same as in Eq. (11) albeit
with t = ts . The optimum efficiency after 4 cycles is found as η2 = 4.407 when {c1, c2} = {0.0612L,−0.0273L}.
Although the algorithm for the energy conversion efficiency optimization does not seem to converge as fast as for the
propulsive efficiency optimization, visual inspection of the trend in the distribution samples from Fig. 4(a) shows that
the optimum {c1, c2} are confined to a significantly narrow region after 4 cycles. Different from the swimming mode
{−0.0987L,−0.0013L}, optimum for a start-up motion, optimum mode {0.0612L,−0.0273L} for a steady-state case
shows more intense streamwise motion to reduce the fluid drag. One snapshot of these two optimum gaits is presented
in Fig 1 (b).

C. Single Fish: Temporal Behavior of Swimming Efficiency
In the previous two optimization procedures, t1 is chosen to be fixed as 6T and t2 is equal to ts to make sure fish is

in its steady state. Here we compare how the two efficiency coefficients vary in time with several selected swimming
modes {c1, c2}.

In Fig. 5, the two optimum gaits are highlighted and the rest are chosen for comparison. For the propulsive efficiency,
the optimum propulsive swimming mode provides a fastest growth of efficiency versus time from the start-up. When t1
becomes large enough and fish reaches its steady state, propulsive efficiency should decrease to 0 as no kinetic energy is
gained while the input energy is still finite. It can be seen that for near-optimum propulsive efficiency modes showing
faster growth, the maximum in time and the consecutive decrease is reached sooner, which means that for a fast start-up
swimmer, its steady-state velocity is also reached sooner.

Different from propulsive efficiency, energy conversion efficiency in Fig. 5 (b) increases almost monothonically
and stabilizes at its highest value, except for the mode that corresponds to an optimum propulsive efficiency η1 of the
optimization Case 1. This mode reaches a fairly high velocity that makes the flow increasingly turbulent, and the input
energy increasingly variable from cycle to cycle. As a general observation, some swimming modes reach the steady state
faster, while some need considerably longer time. However, the modes that reach the steady state faster are generally
lower in energy conversion efficiency indicating that to maintain their speed at the steady state, it is not cost-efficient.
The monothonically increasing trend shows that before the fish reaches its steady state, the cost effectiveness of energy
conversion is always smaller than that in the steady state.
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Fig. 4 CMA-ES procedure for single fish energy conversion efficiency.
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Fig. 5 Change of efficiency coefficients for selected swimming modes with the integration time. Optimum
modes for η1, η2 are highlighted in bold.

It is also reasonable to look into the relation between the steady-state forward mean velocity with the two efficiency
coefficients. In Fig. 6, mean forward velocity in unit length L of one last period is compared with efficiency η1 and η2.
It shows that η1 has a positive correlation with the mean steady-state velocity. It indicates that if propulsive efficiency
for 6T of a fish is large, then its steady-state velocity would be large as well. It assures a reasonable assumption that the
swimming mode which is propulsive efficient is also fast swimming. As for energy conversion efficiency η2, higher
velocity mode tends to have a moderate efficiency while higher efficiency provides only a moderate or even low velocity.
It is understandable, since if a fish is swimming in high speed, the input energy is also large due to a higher drag, which
reduces the cost-efficiency. On the contrary, to maintain a relatively low speed is more cost-effective, since a lower
fluid resistance needs to be overcome. Notice that there are few outliers in the plots, which show exceptionally low
swimming speeds compared to the other modes at comparable efficiency, and their swimming modes are more likely not
realistic or unnatural, although they are within the constraints.
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Fig. 6 Mean steady-state swimming velocity in length L per second vs. different efficiency.

Another interesting comparison that can be done involves the correlation between the two efficiency coefficients.
In Fig. 7, high energy conversion efficiency (η2) mode tends to have a low propulsive efficiency (η1), while a high
propulsive efficiency (η1) tends to have a moderate energy conversion efficiency (η2). When energy conversion efficiency
is high, its steady-state velocity is low, and in that sense, it is not high in propulsive efficiency. When a propulsive
efficiency is high, it gives a high steady-state velocity which means a high kinetic energy, while it is also costly to
maintain such a speed in terms of overcoming fluid resistance (drag), thus the energy conversion efficiency is moderate.
Unfortunately, there is no perfect swimming mode that is high in both efficiency metrics, and thus, in reality, fish gaits
would have to be adjusted to adapt to different circumstances.
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Fig. 7 Propulsive efficiency Vs. Energy conversion efficiency in various swimming modes. Mode selected later
for a fish pair study is circled.

In Fig. 8, the vortex wakes for the two optimum swimming modes in terms of the propulsive efficiency, and the
energy conversion efficiency, are presented. It can be noted that while the wake for the optimum propulsive efficiency
shows a significant lateral undulation and high values of shed vorticity, consistent with a high tail amplitude motion of an
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optimum start-up swimming mode, the wake for the optimum energy conversion efficiency mode is remarkably straight
and the shed vorticity is weaker, corresponding to a more conservative undulatory motion and a more streamlined body
position aimed at drag minimization.

(a) Maximum propulsive efficient swimming mode.

(b) Maximum energy conversion efficient swimming mode.

Fig. 8 Vortex wakes for fishes in different swimming mode. Red lines stand for positive vorticity, while blue
lines stand for negative vorticity.

D. Pair Fish Swimming Efficiency
We now extend a single fish to a fish pair with various middle line distance separation values D of 0.67L, L, and 1.33L.

A moderate swimming mode {c1, c2} = {0.113L,−0.0467L} corresponding to the values of {η1, η2} = {0.1645, 2.5201}
is selected for a general purpose of fish pair performance study. The selected swimming mode is circled in Fig. 7.

Two efficiency comparison with various integration time is shown in Fig. 9. When fish distance is increased
to D = 1.33L, both anti-phase and in-phase results show a trend to match up the single fish results and almost no
improvement or drawback could be seen as the fishes have a decreasing influence on each other when their separation is
relatively large. However, for D = 0.67L, anti-phase swimming shows a strong improvement in propulsive efficiency
while in-phase configuration shows a strong setback. As discussed previously, fast swimmers are not cost-effective, so it
is reasonable for anti-phase motion to have a lower efficiency in energy conversion as observed.

For energy conversion efficiency, only in-phase swimming with D = L shows higher efficiency than the single fish.
To better look into the problem, Fig. 10 is presented with the fish pair mean steady-state velocity compared at different
efficiencies. As can be told from the Figure, in-phase swimming with D = L is slower than a single fish swimming
which results in increase in the energy conversion efficiency. The speed of the in-phase swimming with D = 0.67L is
however too low, which, although decreases the fluid drag, also significantly lowers a kinetic energy, making the overall
motion less energy-efficient.

From Fig. 10, anti-phase configuration provides better propulsive efficiency by reducing the input energy while
keeping a similar value of the steady-state velocity. However, the in-phase configuration is shown to both reduce the
efficiency of a stat-up motion and decrease the steady-state speed. However, this speed reduction seems to offer some
in-phase configurations a relative small advantage with respect to the energy conversion efficiency. It is interesting to
note, that, as compared to a single fish motion, a steady-state velocity is always reduced by all fish pair configurations
at this particular swimming mode. The beneficial hydrodynamic interaction between the fishes can however result
in a sufficiently lower input energy to reach its, although slightly lower, steady-state speed, which can increase the
cost-effectiveness for both the start-up and the steady-state motion in fish arrays, however in different configurations.
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The vortex wakes for the fish pair separated by the lateral distance D = 0.67L for both anti-phase and in-phase
configurations is shown in Fig. 11. As with a single fish motion, the anti-phase configuration that tends to be more
efficient in start-up (higher propulsive effieciency) shows strongly undulating wakes, while in-phase configuration which
is more drag-reducing and more energy efficient for a long-term swimming, shows significantly narrower wakes with a
suppressed near-surface vorticity shedding.
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Fig. 9 Efficiency comparison between different fish distances and phases for the same swimming mode.
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Fig. 10 Mean steady-state swimming velocity for a fish pair in the units of length L per second vs. efficiency.

IV. Conclusion
In this paper, optimization of thunniform locomotion for a single fish propulsive efficiency and energy conversion

efficiency, as well as the performance study of a fish pair has been considered. The computational framework has
been developed that couples high-order fully resolved computational fluid dynamics simulations of flexible swimming
bodies under water with a gradient-free optimization procedure based on evolution adaptation strategy. For a single
swimmer, the optimum gaits of locomotion have been determined that maximize the propulsive efficiency and the energy
conversion efficiency of undulatory motion with two optimization parameters. The relation between the two efficiency
values and the swimming speed of the particular swimming modes has been discussed. For a fish pair, the separation
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(a) Anti-phase. (b) In-phase.

Fig. 11 Vortex wakes for pair fish with distance 0.67L. Red lines stand for positive vorticity, while blue lines
stand for negative vorticity.

distance between the fish has been shown to be influential for their swimming efficiency, with both the in-phase and the
anti-phase undulatory synchronization between the swimmers. It was found that a swimming efficiency can be increased
by a pair of fish as compared to a single fish, both for the propulsive efficiency, and the energy conversion efficiency,
albeit by different fish pair configurations. The vortex wakes for the two optimum modes of motion (propulsion efficient
versus energy efficient) have been compared and analyzed both for a single fish and a fish pair.
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