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ABSTRACT
This study is concerned with understanding and improve-

ment of mass flow rate measurement uncertainty and errors en-
countered at low flow rates and start-up in commercially avail-
able flow rate measurement devices, such as orifice flow meters.
The flow through a typical cylindrical flange-tapped orifice flow
meter is modeled computationally so the actual mass flow rate is
known a-priori. Empirical predictions from the reading of “vir-
tual” pressure sensors are compared with the actual flow rate
and the measurement errors are quantified and analyzed. Com-
mercial code ANSYS-Fluent is compared in this study to the in-
house high-fidelity spectral-element solver Nek5000, so that con-
clusions about the applicability of a commercial code to the cal-
culations of measurement uncertainty in the orifice flow meters
can be made.

NOMENCLATURE
D Meter tube internal diameter.
d Orifice plate bore diameter.
t Thickness of the orifice plate.

∗Address all correspondence to this author

l1 Upstream meter tube length.

l2 Downstream meter tube length.

qm Mass flow rate from empirical equation.

q̄m Corrected mass flow rate from empirical equation.

Cd Orifice plate coefficient of discharge.

Ev Velocity of approach factor.

Y Expansion factor.

gc Dimensional conversion constant.

ρ Fluid density.

µ Fluid dynamic viscosity.

∆p Orifice differential pressure.

π Universal constant.

ReD Pipe Reynolds number.

Re Reynolds number.

β Diameter ratio.

Qm Mass flow rate from simulation.

e Napierian constant.

SCFH Standard cubic feet per hour.
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INTRODUCTION
Differential-pressure flow meter is a device used to measure

flow rate from pressure drop through a constriction in a pipe such
as an orifice, venturi tube, V-cone, etc, and it contributes to at
least 40% of industrial flow meters in use as of 2015 in vari-
ous industries, e.g. water, natural gas or oil industry [1] . The
most popular geometry for its accurate measurement is an ori-
fice plate which is a thin plate with a hole in it. Orifice plate is
small, simple, easy to install or remove. Also, compared to some
other, more advanced measuring technologies, such as ultrasonic
flow meter [2], it is relatively cost effective and easy to maintain.
There are mainly three types of orifice plates - concentric, seg-
mental and eccentric based upon the measuring objectives, e.g.
a segmental orifice is better used for colloidal and slurry flow,
while eccentric one is better suited for solids, oil containing wa-
ter and wet streams. For liquids, gas and vapor, 80 percent of
measurements choose square-edged concentric orifice, as per [3].

For a sharp-edged orifice flow meter with corresponding tap-
pings, mass flow rate is obtained based on the potential flow
model from Bernoulli’s theorem [1], and in practice, a discharge
coefficient multiplies the expression from Bernoulli’s equation,
to take account for the difference between real and ideal (po-
tential) flow rate. One of the most recognized expressions for a
discharge coefficient is the Reader-Harris/Gallagher (RG) equa-
tion (1990, 1998), that is accepted as a gold standard in Amer-
ican Gas Association (AGA) and American Petroleum Institute
(API) publications and is commonly used in many commercial
flowmeter devices. The Reader-Harris/Gallagher (RG) equation
was developed through an extensive regression data analysis ob-
tained from four working fluids at different operational regimes
and for different orifice plate geometries [4]. It gives an advan-
tage of being a generalized expression suitable for many different
configurations, but it is calibrated only for high Reynolds number
regimes (Re > 4000) and fully-developed flow conditions. While
RG equation is inaccurate at low Reynolds number regimes, it is
still being used by industry practitioners at the absence of an al-
ternative expression, and due to unawareness. This mis-use of
the standard RG equation at low flow rates leads to large un-
certainties in the prediction of the flow rate in industrial opera-
tions, and consequently in the estimation of the consumption of
the working fluid. In the UK, for example an estimated uncer-
tainty of natural gas consumption is about £25 billion per year,
which is associated with a monetary equivalent of metering un-
certainty of £250 million per year. Since industrial operations at
low Reynolds numbers are unavoidable and ubiquitous (for ex-
ample, during a start-up or shut-down of equipment), these un-
certainties, and the measurement errors at low Reynolds numbers
must be minimized.

The current paper is devoted to an investigation of flow rate
measurement uncertainties at low Reynolds numbers via a com-
putational simulation framework, where the flow rate measure-
ments can be obtained from “virtual” (numerical) pressure sen-
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FIGURE 1. THE SKETCH OF THE CROSS SECTION OF A NAT-
URAL GAS ORIFICE FLOW METER.

sors at the wall and compared to an actual flow rate (supplied as
inflow conditions), from which the measurement error can be de-
duced. We indeed confirm the low accuracy of the RG equation
at low flow rates, quantify the errors versus the Reynolds number
at two flow conditions, and propose a low-Reynolds number cor-
rection for a given orifice geometry, that recovers the actual flow
rate without an error. The correction is based on the correlation
of the simulation data with the “virtual” orifice pressure reading
at low flow rates at a certain flow condition. We also investi-
gate the flow measurement uncertainties in the presence of un-
steady velocity ramp conditions, simulating the unsteady effects
of start-up an shut-down of equipment during the operations, and
relate the measurement errors to transient unsteady vortex sys-
tems formed behind the orifice plate in these regimes [5, 6]

MODELING FRAMEWORK
Geometry of the Orifice Flow Meter

The simulation geometry is based on a realistic natural gas
orifice flow meter. An orthographic projection of its cross section
is illustrated in Fig. 1. D = 0.2 (m) is the meter pipe’s internal di-
ameter, d=0.139 (m) is the orifice bore, t=0.006 (m) is the thick-
ness of the orifice plate, and l1, l2 are the upstream and down-
stream pipe lengths, respectively. Two values of the upstream
distance l1, 2.5D and 5D, are used and compared in this paper,
while the downstream distance l2 is fixed at 7.75D. The bound-
ary conditions are also illustrated in Fig. 1, where v represents
the inlet boundary, O is an outlet boundary and W is non-slip
wall boundary. A plug flow or a laminar parabolic profile with a
specified mass flux is supplied at the inlet boundary. To avoid a
negative local flux at the outflow, which would result in numeri-
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cal instabilities, the downstream meter tube length was increased
and a divergence function [7] was imposed on the boundary.

The geometry is slightly modified in ANSYS-Fluent. All
major dimensions are kept the same D = 0.2 (m) and d=0.139
(m). However, the upstream length l1 is 3D and l2 is 6D. ANSYS
is very robust at dealing with reversed flow at the outlet and thus
faced no divergence issues with this geometry.

Pressure Probes 1 and 2 are placed 25.4 (mm) upstream and
downstream as the flange-tapped orifice meter on the walls of the
pipe, and are going to be used in this paper as the baseline mea-
surement locations. In practice, the pressure sensors have finite
dimensions and might end up measuring the flow pressure at a
location that is off-set from the wall. In order to evaluate un-
certainty in the measurements to the location of the downstream
pressure sensor, two additional downstream pressure probes were
placed: Probe 3 at a distance 33 (mm) downstream of the orifice
and 12.5 (mm) from the wall, and Probe 4 at a distance 41 (mm)
downstream of the orifice and 25 (mm) from the wall. Uncer-
tainty in the downstream probes were deemed to be more sub-
stantial, due to a potential flow modification at the orifice exit
caused by separation and vortex shedding, while the uncertainty
in the upstream probe was not investigated in this study.

Computational Fluid Dynamics Solvers
The simulation results of this paper are based primarily on a

high-order spectral element code Nek5000. Additionally, some
results from commercial code ANSYS-Fluent 18.2 are used for
the purpose of comparison.

Nek5000 Spectral element code Nek5000 [8] has been
continually developed for more than 30 years. It is a fast, scalable
and highly efficient high-order solver for computational fluid dy-
namics problems. Spectral element method (SEM) is similar in
its form to finite element methods, but it utilizes high-order basis
functions, specifically, high-order polynomials associated with
the Gauss-Legendre-Lobatto quadrature points. It leverages the
chosen polynomial approximation for a tensor-product efficiency
that allows for a fast convergence.

The numerical scheme used in Nek5000 solves incompress-
ible Navier-Stokes equations with a backward-differentiation
formula with time step δ t and an explicit extrapolation for the
convective term. Pressure p and velocity u are decoupled though
a standard splitting operation in a following semi-discrete repre-
sentation:

βkū
δ t
− µ

ρ
∆ū =−

k

∑
j=1

βk− j

δ t
un+1− j

−
k

∑
j=1

α j(u ·∇u)n+1− j− ∇p̄n+1

ρ
,

(1)

∆(pn+1− p̄n+1) = ∇ · (βkū
δ t

), (2)

un+1 = ū− δ t
βk

∇ · (pn+1− p̄n+1). (3)

Here n is the time step index, ρ is the density of the fluid,
µ is the dynamic viscosity, ū and p̄n+1 = 2pn− pn−1 are the in-
termediate velocity and extrapolated pressure at n+1 time step,
respectively. The terms β and α represent the coefficients of the
backward difference and extrapolation schemes of a given con-
vergence order k. In the current study, k is set to 2, corresponding
to a second order accuracy in time both for velocity and for pres-
sure [8, 9].

Eqns. (1), (2), (3) are spatially discretized in a spectral-
element PN −PN−2 formulation. The velocity and the pressure
are represented in the polynomials spaces XN and Y N−2, which
are finite-dimensional subsets of H 1

0 (Ω) and L2(Ω), where Ω

is the computational domain [8, 9]. The discretized approx-
imation of velocity for example in an element Ωe would be
uuu(xxx)|Ωe = ∑

N
i, j,k=1 uuue

i j k hi(r)h j(s)hk(ζ ). Here hi(r), i = 0, . . . , N
are the basis functions in the form of Lagrange polynomials
based on Gauss-Legendre-Lobatto quadrature points, ξ j, such
that hi(ξ j) = δi j. In that way, SEM provides exponential conver-
gence of the solution with the degree of the interpolating poly-
nomials N [8, 9], and in this paper, N = 7 has been employed.
The computations with Nek5000 were run in Direct Numeri-
cal Simulations (DNS) regime or Large Eddy Simulations (LES)
regime, depending on the Reynolds number. The numerical grid
for all Reynolds numbers comprised of 375 elements in the pipe
cross-section (on average, the cross-sectional area upstream of
the orifice was slightly less refined, while the cross-sectional
area downstream of the orifice was slightly more refined), with
150 elements across the streamwise length of the pipe, giving
56190 elements, and approximately 19 mln. grid points in total.
To achieve stabilization at higher Reynolds numbers, an explicit
modal filtering with the weight γ = 0.01 was applied to the last
two modes of the polynomial approximation [10], which can also
be thought of as an implicit subgrid-scale model in Large Eddy
Simulations [11].

ANSYS-Fluent ANSYS-Fluent is a commercially avail-
able Computational Fluid Dynamics solver suite. It has a mul-
titude of different solver formulations for both incompressible
(pressure-based, decoupled velocity and pressure) and compress-
ible (density-based, coupled velocity and pressure) as well as
transient and steady-state formulations. Given the relatively slow
speed of the flow and to ensure comparability, an incompressible
transient solver was implemented.

The specific algorithm was the SIMPLE-C [12] (Semi-
IMplicit Pressure Linked Equations-Consistent ) algorithm. This
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is a second order accurate algorithm in space and time. The
SIMPLE-C algorithm is a predictor correct algorithm built on
a staggered grid. The velocity components are calculated on the
cell faces, while the pressure is always calculated at the cell cen-
ter to limit the potential of checker-boarding dynamics where ad-
jacent cells become decoupled.

Typically, commercial codes are run in a Reynolds-
Averaged Navier Stokes (RANS) regime, which has the bene-
fits of significant computational savings. In addition to offering
multiple formulations for solving the Navier-Stokes Equations,
ANSYS-Fluent offers many different models of turbulence. In
the interest of maintaining conformity with standard industrial
practice, the K-ω SST model [13] with Low Reynolds number
correction was chosen for the current simulations. The simula-
tions with ANSYS-Fluent described in this paper were done in
the DNS setting (without the turbulence model) for Re < 2000,
and in the RANS setting (with K-ω SST model turned on) for
higher Reynolds numbers, on a grid that consisted of 393100
total elements amounting to approximately 1.5 mln grid nodes.
The simulations with ANSYS-Fluent were performed in this pa-
per to judge the ability of conventional low-fidelity approaches to
model complex unsteady flows associated with sharp orifices in
flow measurement devices as compared to a DNS research code
employing high-order methods.

ORIFICE METER MASS FLOW EQUATION
The orifice flow meter uses only the measurements from

the pressure sensors upstream and downstream of the ori-
fice. Given a pressure difference, the mass flow is calcu-
lated based on a discharge coefficient equation developed by
Reader-Harris/Gallagher (1990) for concentric, square-edged,
and flange-tapped orifice meters as reported in American Gas As-
sociation Report No.3 Part 1 [4]. There are other equations such
as Reader-Harris/Gallagher (1998) and PR14 [1] as well, but here
we would present Reader-Harris/Gallagher (1990) in detail. The
equation is representative of any major working fluid including
natural gas (which this study considers), various orifice configu-
rations, pipe diameters greater than 50 (mm), and an orifice plate
bore diameter greater than 11.4 (mm) [4]. But the measuring sys-
tem should be calibrated to meet the similarity of the reference
conditions with that obtained in a laboratory environment. The
equation is

qm =CdEvY (
π

4
)d2
√

2gcρ∆p, (4)

where qm is mass flow rate, Cd is orifice plate coefficient of dis-
charge, Ev is the velocity of approach factor, Y is the expansion
factor, gc is the dimensional conversion constant, ρ is the work-
ing fluid density and ∆p is orifice differential pressure. The cur-
rent equation is calibrated using a fully developed approach flow.

The working fluid of this paper is natural gas where its den-
sity ρ= 1 (kgm−3) and dynamic viscosity µ=10−5 (kgm−1 s−1).
These fluid properties are considered constant in the simulation.

In Eqn. (4), with the exception of the discharge coefficient
Cd and measured values ∆p, all values are predetermined. The
velocity of approach factor Ev =

1√
1−β 4

with β = d
D being the

diameter ratio. The expansion factor Y = 1 as the flow is consid-
ered incompressible. The dimensional conversion constant gc is
1 (kgmN−1 s−2).

The discharge coefficient Cd for an orifice meter with flange
taps and diameter ratio β of 0.1-0.75 is determined by:

Cd =Ci(FT )+0.000511(
106β

ReD
)0.7 +(0.021+0.0049A)β 4C, (5)

Ci(FT ) =Ci(CT )+TapTerm,

Ci(CT ) = 0.5961+0.0291β
2−0.229β

8 +0.003(1−β )M1,

TapTerm =U pstrm+Dnstrm,

U pstrm = (0.0433+0.0712e−8.5L1 −0.1145e−6L1)(1−0.23A)B,

Dnstrm =−0.0116(M2−0.52M1.3
2 )β 1.1(1−0.14A),

B =
β 4

1−β 4 ,

M1 = max(2.8− D
N4

,0),

M2 =
2L2

1−β
,

A = (
19000β

ReD
)0.8,

C = (
106

ReD
)0.35,

where e is the Napierian constant, N4 is the tap location, L1,
L2 are the dimensionless corrections for the tap location. In this
study, we use N4 = 24.5(mm), and L1 = L2 = N4/D, which cor-
responds to the pressure Probe 1 and Probe 2 locations, for which
the current flowmeter has been designed. Although uncertainty
in probe location can effect a flow measurement, it is assumed
that the probes in the simulation are placed exactly at the manu-
facturer’s specified position. The pipe Reynolds number ReD in
this equation is defined as

ReD =
4qm

πµD
. (6)
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Mass flow rate qm is calculated from Eqn. (4), which is a non-
linear equation for qm, since Cd in the right-hand side depends on
qm implicitly through the Reynolds number, see Eqn. (5). There-
fore, Eqn. (4) requires an iterative scheme to solve. The conver-
gence criteria is taken to be (qi+1

m −qi
m)/qi+1

m ≤ 10−10. Diverged
or multiple solutions were not found in the regimes tested.

While the measured mass flow rate qm is calculated from the
measured pressure differential, the nominal mass flow rate spec-
ified in the simulations can be computed as Qm =

∫∫
Ω

ρu(r, t) dΩ

where u(r, t) is the inlet velocity corresponding to either a plug
(u(r, t) = v(t)), or a parabolic inflow (u(r, t) = v(t)(1− r2/R2)),
R is the pipe radius, and Ω is the pipe inlet cross section area. De-
pendence of the inlet velocity on time is introduced to describe
the unsteady mass flow cases considered later in the paper. v(t)
is constant when the steady mass flow cases are considered in
the first part of the paper. The error between the two values,
(qm−Qm)/Qm× 100%, measures the accuracy of the flow rate
measurements with the modeled flowmeter. The Reynolds num-
ber based on the nominal flow rate

Re =
4Qm

πµD
(7)

can also be defined and will be used as a true Reynolds number
in the subsequent plots. ReD and Re will be close to each other,
where the error in the flowmeter measurements is small. For the
purpose of aligning with standard industrial practices, the mass
flow rate qm or Qm are converted to cubic feet per hour (SCFH)
assuming that the density of the natural gas is 0.7 (kgm−3) at
standard condition.

RESULTS
Steady Mass Flow Conditions

We will first describe the results obtained at the steady mass
flow conditions, i.e. when the inlet velocity v is not varying in
time. For these simulations, the fluid was at rest initially (zero
flow initial conditions), and a constant mass flux at the inlet was
suddenly applied.

Flowrate Measurements According to Pressure
Probe 2 The flowmeter Eqn. (4) is nominally accurate for
Reynolds numbers greater than 4000 under fully developed flow
condition. For flowmeter calibration in most industrial piping
systems, like natural gas transportation in power plant, a honey-
comb flow conditioner is commonly used to eliminate the swirl
and the flow asymmetry. It is usually installed around 10D up-
stream of the orifice flowmeter to promote a fully developed flow
when it arrives the orifice flowmeter. The hydrodynamic entrance
length is conventionally estimated as 10D for turbulent flows in
most practical engineering applications [14]. This implies that if
the flow is in a turbulent region, elongating the entrance would
not make a significant difference in the velocity profile.

However, in industrial pumps and piping systems, lower
Reynolds numbers are achieved frequently during start-up and
shut-down. For laminar flows, a hydrodynamic entrance length is
significantly longer, estimated as 0.05ReD from a plug flow [14],
which, for example, equals to 50D for a Reynolds number ReD =
1000, which is in a laminar regime. With that in mind, the ap-
proach flow condition that the orifice flow meter sees in practice,
might be far from being fully developed, especially in the lami-
nar regimes.

For these conditions, industry still uses Eqn. (4) which has
been calibrated for high Reynolds number flow and a fully-
developed profile. This leads to a large error in the flow rate mea-
surements at low Reynolds numbers. The error could either come
from an empirical equation itself or from an unknown flow con-
dition. To quantify these errors, a set of simulations with vary-
ing Reynolds numbers between Re=100 and 10000, have been
conducted with a different upstream length and inlet boundary
conditions.

To illustrate various possible flow conditions that can hap-
pen in a realistic environment, two extreme cases are consid-
ered for constructing two error bounds. The upper signed er-
ror bound comes from the results with a plug inflow and a very
short (2.5D) upstream development length. The lower signed er-
ror bound comes from a fully developed parabolic inflow. With
the parabolic inflow, the upstream length does not significantly
influence the results in the cases investigated. As a verifica-
tion, we have performed simulations with both 2.5D and 5D up-
stream pipe lengths and found no difference in the results with
the parabolic inflow with the same numerical method (Nek5000),
which is reflected in Fig. 2. A development length influences the
results, but only slightly, when we go from 2.5D to 5D upstream
length with the plug inflow, see Fig. 2.

In Fig. 2, the results from Re=500, 1000, 2000, 4000,
10000 DNS or RANS simulations with ANSYS-Fluent using
both plug and parabolic inflow with the upstream length of 3D,
and Re=100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000,
5000, 10000 DNS or LES simulations with Nek5000 using two
different upstream lengths and two inlet conditions (plug and
parabolic) are presented. Data was acquired when the flow
reached a steady state condition from the quiescent initial state,
determined by the state when the pressure difference between the
inlet and outlet ceases to fluctuate significantly.

Fig. 2 shows the combined effect of the accuracy of the em-
pirical equation for mass flow rate calculation, but also the ef-
fect of the approach flow condition, as well as the numerical
accuracy and mesh resolution of the codes, and needs to be in-
terpreted carefully. First observation is that both Nek5000 and
ANSYS-Fluent show remarkably good agreement for the mass
flow rate error estimation in all the Reynolds number regimes
considered, and provide confidence in numerical results. Second
observation is that, as expected, both codes show relatively low
errors at high Reynolds numbers, while very large errors at low
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FIGURE 2. RELATIVE ERROR COMPARISON BETWEEN
ANSYS-FLUENT AND NEK5000 IN STEADY-STATE REGIME.

Reynolds numbers, confirming the fact that indeed the empiri-
cal mass flow rate equation in its original form is not suited for
low Reynolds numbers. Slight downward shift of ANSYS-Fluent
versus Nek5000 results at higher Reynolds numbers is a manifes-
tation of numerical resolution effects where RANS calculations
on coarser grids result in slight underestimation of a mass flow
rate contributing to a slight negative error compared to Nek5000
results. We would also like to comment on the difference be-
tween parabolic and plug inflow. At low Reynolds numbers of
200 < Re < 1000, parabolic profile is a better approximation of a
fully-developed flow condition and thus gives the smaller errors.
At higher Reynolds numbers, when the flow transitions to tur-
bulent, the fully-developed mean pipe flow profile steepens and
starts resembling a plug flow closer than a parabolic flow, which
explains why the plug inlet results start showing smaller errors,
which are in fact close to zero for the grid-resolved results with
Nek5000 at Reynolds numbers higher than 2000. Both codes
show consistent trends with the inlet conditions, albeit, again,
ANSYS-Fluent has slightly higher errors due to mesh resolution.
At very low Reynolds numbers of 100, the error coming from the
empirical equation itself is so large, close to 100%, that the trends
due to the difference in inlet conditions are obscured by the er-
rors. Having demonstrated an overall consistency of numerical
results produced by the two codes, in the rest of the paper we
will resort to the data obtained by a higher-order code Nek5000
and on a finer mesh compared to ANSYS-Fluent, to make sure
that the fluctuating fields are properly resolved, especially in un-
steady flow regimes considered later.
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FIGURE 3. THE MASS FLOW RATE COMPARISON FROM DIF-
FERENT PRESSURE PROBES AT RE=100 WITH 2.5D UPSTREAM
PLUG INLET. THE ACTUAL FLOW RATE Qm = 28.47.

Mass Flow Rate Comparison Between Different
Pressure Probes In Fig. 2, the pressure difference is cal-
culated from pressure Probes 1 and 2. This section is devoted to
estimating the uncertainty to the downstream pressure probe lo-
cation. Consequently, the flow rate obtained from measuring the
pressure differential involving Probes 3 and Probes 4, respec-
tively, will be compared with the flow rate calculated from Probe
2 (upstream pressure Probe 1 is remained fixed at the wall). Two
mass flow rate calculations at Re=100 and Re=3500 with 2.5D
plug inlet are shown in Fig. 3 and Fig. 4 to determine whether the
pressure from different probe locations affects the results. It can
be seen that for the two Reynolds numbers presented, the mea-
surement results obtained from different probes vary insignifi-
cantly. The cases of other Reynolds numbers were also analyzed
by using different probes yielding a similar conclusion, they are
however not shown here for conciseness. The case of Re=100 re-
sults in an overall mass flow rate difference from different probes
of less than 1 (SCFH) which amounts to approximately 1% error
at this flow rate compared to almost a 100% error caused by the
inconsistency of the orifice flow equation at this very low Re (see
Fig. 2). For Re=3500, the difference in mass flow rate obtained
from different probes is indistinguishable at steady state. Thus, it
was concluded that the uncertainty to the probe location is mini-
mal in these flow regimes, and should not be the issue of concern
for engineering practitioners.

Error Correction at Low Reynolds Numbers Ac-
cording to Fig. 2, using Eqn. (4) causes a high relative error when
the Reynolds number is low, that is less than∼ 1000. Since there
does not seem to be any evidence of unsteadiness or vortex shed-
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FIGURE 4. THE MASS FLOW RATE COMPARISON FROM
DIFFERENT PRESSURE PROBES AT RE=3500 WITH 2.5D UP-
STREAM PLUG INLET. THE ACTUAL FLOW RATE Qm=996.44.

ding below Re = 1000, and uncertainty to the probe location is
minimal as described above, the most likely cause of error is a
poor fit of the Eqn. (4) for the low Reynolds number cases, which
can be corrected for. Since the relative error from 2.5D upstream
with plug inflow is quite small when Re > 4000 consistent with
the orifice flow meter specifications, parabolic profile indeed is
rare in practical situations due to either a very long development
length required in laminar flows, or strong deviations of the mean
profile from a parabolic shape in turbulent flows, and the fact that
the error difference between two boundary conditions is small
at low Reynolds numbers, we incline to correct the empirical
Eqn. (4) with the presented orifice geometry based on the results
from the upper error bound, i.e. 2.5D upstream with plug inlet.

In Fig. 5, various discharge coefficients computed from dif-
ferent empirical equations are compared with the one from nu-
merical simulation assumed as the “correct” values. Here we
only correct Reader-Harris/Gallagher (1990) equation. As the
“correct” Cd from simulation could be directly computed from
Eqn. (4) by replacing qm with Qm, the difference between two Cd
can be fitted as a function of ReD

∆Cd(ReD) =

{
357Re−1.175

D −0.01294; ReD ≤ 10000
0; ReD > 10000

. (8)

Notice that the exact form of the correction ∆Cd(ReD) would
depend on a particular geometry. This can potentially be merged
into a single correction formula across the geometries in a format
similar to the empirical equation itself, however obtaining such
a universal correction was not the focus of this paper. Once the
correction is known, the Reader-Harris/Gallagher (1990) equa-
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FIGURE 5. THE DISCHARGE COEFFICIENT FROM VARIOUS
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tion valid over all Reynolds numbers can be written as

qm = (Cd−∆Cd(ReD))EvY (
π

4
)d2
√

2gcρ∆p. (9)

Unsteady Mass Flow Conditions
In the previous section, we investigated the error in orifice

flow rate measurements at steady mass flow conditions and pro-
posed a correction for low flow rates which helps to obtain ac-
curate flowmeter readings even at low Reynolds numbers. How-
ever, it is often encountered in practice, that the incoming mass
flux is varying in an unsteady manner, such as during the start-up
and shut-down conditions, or during the opening or closing the
valve for maintenance purposes. The unsteady operations can
also effect the accuracy of the flow rate measurements, and the
current section is devoted to investigation of these effects. All
the unsteady cases here are simulated with 2.5D upstream and
plug inflow as the focus shifts.

The description of the unsteady test cases The un-
steady test cases are designed to simulate the ramp-up conditions
that can occur during, for example, a gas turbine start-up process
in industrial utilities. To achieve this condition, the inlet velocity
v is ramped from its original value v1 to a higher value v2 over
the duration of a ramp-up time tramp. The simulations begin from
a fully developed flow condition based on the Reynolds number
corresponding to a starting inlet velocity v1. The ramp-up occurs
between the time t1 and t2, after which the inlet velocity remains
constant and equal to v2 for the duration of the simulations. The
ramp function was designed which is a third order polynomial in
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TABLE 1. RAMP FUNCTION PARAMETERS FOR UNSTEADY
CASES

Case t1(s) t2(s) v1(mm/s) v2(mm/s) Re1 Re2

A 5 7 5 12.5 1000 2500

B 5 7 7.5 12.5 1500 2500

D 5 7 10 12.5 2000 2500

D 5 9 5 12.5 1000 2500

E 5 7 1.25 3.125 250 625

time and has a zero slope at both the initial time t1 and final time
t2 (corresponding to zero initial and final acceleration). The time-
dependent inlet velocity v(t) for the duration of the simulations
can then be described by the following equation

v(t) =


v1 0≤ t < t1,

a(t− t1)3 +b(t− t1)2 + c t1 ≤ t ≤ t2
v2 t2 < t.

, (10)

The description of the ramp-up parameters corresponding to sev-
eral simulated unsteady cases are provided in Table 1, while the
coefficients a, b, c are obtained from fitting the corresponding
third-order polynomials.

Error From Start-up Mass flow rate comparison be-
tween the actual and measured flow rates in different probes is
shown in Figs. 6 and 7 for selected test cases, Case A and E, both
uncorrected and corrected (according to Eq. 9) are presented. It
is seen that while correction definitely helps to get rid of a sys-
tematic bias in the measurements (by shifting the profiles down
closer to the actual value), a significant error associated with the
velocity ramp still persists. This error can be attributed to a tran-
sient vortex shedding, that occurs due to a sudden flow influx re-
sulting in a pressure ramp during unsteady conditions [15]. Such
vortex shedding is visualized in Figs. 8–10 for Case A. These
figures show a snapshot of the pressure field that illustrates the
vortex formation. A distinct high pressure region is formed at the
initial time of the ramp-up in the centerline region of the flow past
the orifice, resulting in a low pressure region near the wall which
causes the primary vortex to form. The low pressure region af-
fects the pressure probes at the wall and artificially increases the
measured pressure differential resulting in the overestimation of
the measured flow rate (up to 15% in Case E). In Case A, sec-
ondary vortex shedding also occurred after the passage of the
primary vortex, which is characterized by a periodic shedding of
the weaker vortices as can be seen in Fig. 8 at time t=9 seconds (2
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FIGURE 6. MASS FLOW RATE FROM SIMULATION AND
PRESSURE PROBES; CASE A.

seconds after the end of the ramp). The secondary vortex shed-
ding results in a fluctuating pressure and thus in a fluctuating flow
rate measurement as seen in Fig. 6. The fluctuations associated
with the secondary vortex shedding are temporary and last for
the duration of approximately 3 seconds in Case A, while they
eventually decay and the flow returns to a steady condition. The
secondary vortex system was only observed in Case A, which is
characterized by the strongest velocity ramp rate

(
v2−v1
t2−t1

)
among

all the cases. While the secondary vortex shedding does not al-
ways occur, a primary vortex of a varying strength was detected
in all the investigated ramp-up cases, resulting in a transient false
positive reading of the flow meter, see an example in Fig. 7 for
Case E. Table 2 presents the summary of the observed vortex sys-
tem parameters and the flow rate measurement errors, where tp

is the time the primary vortex was detection, tp−t1
t2−t1

measures the
time of the primary vortex detection since the beginning of the
ramp-up versus the duration of the ramp, ts is the duration of the
secondary vortex system, if observed, qm is the measured flow
rate, Qm is the actual flow rate (in SCFH) at the passage of the
primary vortex (corresponding to the largest error), and “Error”
is the maximum flow measurement error. It is seen that, while the
erroneous measurements in this situation are transient and only
last for several seconds, the attainable errors are not insignifi-
cant, reaching as mush as 12% in some cases. These errors can
bias the bulk statistics of the machinery operations, as well as
overestimate the peak consumption, and can lead to inappropri-
ate actions and unstable feedback loops if coupled with real-time
control systems.
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FIGURE 7. MASS FLOW RATE FROM SIMULATION AND
PRESSURE PROBES; CASE E.

FIGURE 8. SNAPSHOT OF PRESSURE FIELD; CASE A AT
TIME=9 S (2 S AFTER THE END OF THE RAMP).

TABLE 2. PROPERTIES OF THE VORTEX SYSTEMS AND
MAXIMUM MEASUREMENT ERRORS

Case tp(s)
(tp−t1)
(t2−t1)

ts(s) qm(SCFH) Qm(SCFH) Error, %

A 6.8985 0.9492 2.58 750.24 708.55 5.884%

B 6.9075 0.9538 N/A 737.71 709.97 3.907%

C 6.9085 0.9542 N/A 723.76 710.88 1.812%

D 8.8455 0.9613 N/A 733.37 709.88 3.309%

E 7.554 1.2770 N/A 199.28 177.91 12.01%

CONCLUSION
This paper has investigated the accuracy of the conventional

Bernoulli-type orifice flow meters at low Reynolds numbers. Ac-
curate measurements at low flow rates are important for indus-
trial operations, especially in the regimes of start-up and shut-
down of the equipment. Via high-fidelity numerical simulations,
we have demonstrated that the conventional empirical formula
for discharge coefficient by Reader-Harris/Gallagher (1990) [4]
is inaccurate a low flow rates, giving the relative error up to 100%

FIGURE 9. ISO CONTOUR OF PRESSURE FIELD; CASE A AT
TIME=9 S (2 S AFTER THE END OF THE RAMP).

FIGURE 10. ISO VOLUME OF PRESSURE FIELD COLORED BY
STREAMWISE VELOCITY; CASE A AT TIME=9 S (2 S AFTER
THE END OF THE RAMP).

at Reynolds numbers close to Re = 100, which gradually de-
creases and becomes negligible after Re = 4000. To improve
the accuracy reading at low Reynolds numbers while keeping a
high accuracy at high Reynolds numbers, we have proposed a
low Reynolds number correction for this particular orifice geom-
etry, which can potentially be extended to more general geome-
tries.

While the flow measurement error can be corrected by a sim-
ple additive correction in steady cases, the situation is more com-
plicated in unsteady cases, for example, the cases featuring the
ramp-up of the velocity, such as in the situation of starting up
the equipment. It was demonstrated via flow visualization, that
in such cases a transient vortex system develops that results in
a sudden drop of pressure behind the orifice wall, significantly
stronger than the corresponding increase in pressure differential
that would otherwise occur during a steady flow with a corre-
sponding mass flow rate. This low pressure region is associated
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with a sudden flow influx due to a ramp-up, and results in a sig-
nificant overprediction of the measured flow rate which in this
case can not be corrected by equation. In some cases, a sec-
ondary vortex system results in the fluctuations of the measured
flow rate associated with the pressure fluctuations due to pass-
ing vortices, which eventually die down. Although the identified
unsteady flow rate measurements errors are transient and do not
last longer than several seconds, they might result in overestima-
tion of both bulk and peak fuel consumption quantities, and can
be detrimental if coupled with real-time monitoring and control
systems by causing overshoots and unstable feedback in closed-
loop operations. While correction of the unsteady errors is be-
yond the scope of this work, it is important to characterize these
errors and make the industry practitioners aware of their nature
and their severity.
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