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STABILITY ANALYSIS OF INTERFACE TEMPORAL
DISCRETIZATION IN GRID OVERLAPPING METHODS∗

YULIA T. PEET† AND PAUL F. FISCHER‡

Abstract. We investigate the stability of a temporal discretization of interface terms in grid over-
lapping methods. A matrix stability analysis is performed on a model problem of the one-dimensional
diffusion equation on overlapping grids. The scheme stability is first analyzed theoretically, and a
proof of the unconditional stability of the first-order interface extrapolation scheme with the first-
and second-order time integration for any overlap size is presented. For the higher-order schemes,
we obtain explicit estimates of the spectral radius of the corresponding discrete matrix operator and
document the values of the stability threshold depending on the number of grid points and the size
of overlap. The influence of iterations on stability properties is also investigated. Numerical exper-
iments are then presented relating the obtained stability bounds to the observed numerical values.
Semidiscrete analysis confirms the derived scaling for the stability bounds.
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1. Introduction. The idea of splitting a computational domain into smaller
subdomains and reconstructing the global solution by coupling individual solutions
has been around for several decades. The motivation for such decomposition can vary:
to accelerate the solution of large linear systems (domain decomposition) [6], [26], [36],
to alleviate grid construction in complex geometries (composite grid methods) [7],
[24], [38], or to achieve the integrated solution of multiphysics problems (integrative
simulations) [17], [29], [34]. The strategy of how this decomposition is performed can
be further classified into nonoverlapping [2], [5], [8], [15], [22] and overlapping grid
methods [7], [21], [29], [35], [42].

The current paper is motivated by our recent development of a composite grid
method with overlapping subdomains for solving incompressible unsteady Navier–
Stokes equations [30]. With overlapping grid methods, equations have to be coupled
across the subdomains by the condition of matching variables at the subdomain inter-
faces. Interface variables are expressed through the interior variables of an adjacent
subdomain with the help of an interpolation stencil. This matching can be enforced
either implicitly or explicitly in time. With an implicit formulation, the coupling re-
lations are to be solved implicitly by either iterative or direct methods [7], [41]. This
method can be viewed as an analogue to substructuring methods for nonoverlapping
domains [22], [28], [36]. With an explicit interface formulation, interface values are
also expressed through interior values of an adjacent subdomain with the help of an
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interpolation stencil, but explicitly. Since the interface values are set explicitly, there
is no guarantee that they will still match at the end of a time step unless some kind
of iteration procedure is implemented. In order to eliminate a possible mismatch, the
majority of explicit interface grid overlapping methods use a Schwarz-like iteration
procedure [35] at each time step to guarantee the convergence of interface values (also
called intergrid iteration or the iteration-by-subdomain approach) [16], [25], [37], [39],
[43]. With the iteration-by-subdomain approach, equations are advanced by one iter-
ation followed by interface conditions exchange, advanced by one iteration again, and
so on until global convergence.

Achieving global convergence of the boundary value problem across the compu-
tational domain is an expensive process: thus, in incompressible flow simulations
with fractional/splitting step methods, the solution of the elliptic Poisson equation
for pressure takes up most of the computational time per time step. Introducing a
global iterative loop for other variables (velocities, temperature, etc.) across overlap-
ping subdomains can increase the computational time significantly. The convergence
rate of Schwarz methods applied to singularly perturbed elliptic operators (arising in
unsteady problems) has been found to deteriorate significantly when the overlap size
decreases or the time step increases [4], [33]. Indeed, some schemes with intergrid
iterations can take several hundreds of iterations to reach global convergence of the
variables across subdomains [39]. Therefore, the question arises whether it is neces-
sary to pay such a price for the perfect match of all the interface values. Motivation
for driving interface values to convergence might be twofold: considerations of accu-
racy and stability. However, if the interface conditions are not strictly matching at
the end of a time step but are merely consistent [43] (the difference is of the same
spatial and temporal accuracy as that of the overall solution method), the overall
accuracy of a noniterative scheme would not be lowered by the interface conditions
mismatch. To achieve spatial consistency, attention must be paid to a choice of an
interpolation stencil [3], [7]. For temporal consistency, we have proposed a novel idea
of extrapolating interface values in time with the same (or higher) order of accuracy
than that of the integration scheme.

As follows from the previous discussion, Schwarz iterations are unnecessary for
consistent schemes from the viewpoint of accuracy. The stability question, however,
remains. Although studies of convergence properties of iterative schemes, including
Schwarz multiplicative and additive methods, are plentiful (see, for example, [21], [36],
and references therein), investigations of stability of domain decomposition methods
when iterations are eliminated or at least reduced are scarce. A majority of research
on stability concerns nonoverlapping grids [1], [5], [31], [32]. Some limited stabil-
ity studies in overlapping grid framework were performed by Gao and He [12] for
parabolic problems and by Pärt-Evander and Sjögreen [27] for hyperbolic problems,
in a situation of either fully implicit [12] or first-order explicit [27] coupling.

The goal of the current paper is to develop a methodology for stability analysis
of overlapping schemes when interface values are explicitly extrapolated in time with
arbitrary accuracy (to allow for temporal consistency in a noniterative case). Our
primary concern is to understand the influence of the order of interface extrapolation
on stability properties. The analysis is motivated by the fact that implementation of
a second- and third-order temporal interface extrapolation in a Navier–Stokes solver
resulted in unstable calculations, while a traditional first-order interface scheme re-
mained stable. Since the main focus of the paper is the effect of temporal interface
extrapolation on stability, in the current study we have considered a simplified situa-
tion of uniformly spaced grids with collocated overlap points. An influence of spatial
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interpolation stencil and grid size disparity on stability is an important question and
will be considered in future studies.

In this paper, we fix our attention on a purely parabolic problem of an unsteady
one-dimensional diffusion equation as it retained (at least qualitatively) peculiar sta-
bility properties observed in a Navier–Stokes solver. The current analysis framework,
however, is general enough and can be extended to more complicated situations includ-
ing hyperbolic equations and higher dimensions, as addressed in the discussion section.

The paper is organized as follows. In section 2, we review the existing methods
for stability analysis of partial differential equations. In section 3, we present the
matrix stability framework, which is applicable for analyzing numerical schemes in-
volving temporal interface extrapolation on overlapping grids, and formulate it for a
model problem of a one-dimensional diffusion equation. In section 4, we perform a
theoretical analysis of scheme stability and prove the unconditional stability of the
first-order extrapolation scheme (EXT1) for the first and second order of time integra-
tion (BDF1 and BDF2). In section 5, we explicitly calculate stability thresholds for
other (conditionally stable) schemes and show that these thresholds can be increased
by invoking iterative loops. In section 6, we present numerical experiments to check
the validity of our analysis. In section 7, we look at a semidiscrete equation for the
error propagation and confirm the scalings derived for stability bounds in a discrete
case. In section 8, we discuss the implication of the current analysis and its extension
to more complicated situations.

2. Stability analysis methods. One of the standard methods used to inves-
tigate the stability of numerical schemes for partial differential equations is spectral
(Fourier) analysis proposed by von Neumann [11], [23]. Although attractive because
of its simplicity, von Neumann analysis is limited to uniformly spaced and regular
grids. A more general method for stability analysis of time-dependent systems was
proposed by Gustaffson, Kreiss, Sundstrøm, and Oliger (the GKSO theory) [13], [14],
in which separable normal modes of the solution in the form un

j = znζj resulting from

a discrete Laplace transform are investigated (ζj being a solution to the characteristic
equation of the difference scheme). GKSO analysis was used by Berger to investigate
the stability of interfaces with mesh and time-step refinement for solving hyperbolic
equations on matching grids [1] and by Rivera-Gallego to look at stability proper-
ties of an explicit predictor method for solving the heat equation, also on matching
grids [31]. The drawback of the GKSO method consists in its difficulty of application,
especially to numerical schemes across overlapping subdomains.

A powerful geometrically flexible approach to stability analysis is the method of
lines [20] followed by an energy estimate to establish the negativity [5] or, in a more
general case of nonnormal systems, coercivity [20] of a spatial operator and to obtain
bounds allowing us to choose a stable time step. The specifics of our overlapping grid
method with interface temporal extrapolation results, however, in a situation when
time dependence is introduced into a spatial operator, and unfortunately the method
of lines which considers semidiscrete equations of the form ut = LNu is not directly
applicable.

Matrix analysis, which consists of investigating the properties of a fully discrete
matrix operator for difference equations is therefore a reasonable choice in a situation
where discrete equations at every time level contain strong spatiotemporal coupling
across multiple layers. Matrix analysis is widely used in analysis of iterative algo-
rithms [9], [40]. For iterative algorithms

(2.1) xn = Mxn−1,
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the norm of the error at time n, ‖en‖, is bounded by

(2.2) ‖en‖ ≤ ‖M‖n ‖e0‖,
where ‖M‖ is the corresponding norm of the matrix operator and ‖e0‖ is the norm of
the initial error. Behavior of the error in (2.2) depends on the spectral radius of the
matrix operator ρ (M) defined as the absolute value of the largest eigenvalue. By the
equivalence of norms theorem [9], condition ρ (M) < 1 is the necessary and sufficient
condition for limn→0 ‖en‖ = 0 for arbitrary ‖ · ‖ and ‖e0‖ and, therefore, for stability
of (2.1), since

• ρ (M) ≤ ‖M‖ ∀ ‖ · ‖;
• for any ε > 0, ∃ ‖ · ‖� such that ‖M‖� ≤ ρ (M) + ε.

In the rest of the paper, we develop a matrix stability analysis framework suitable
for analyzing overlapping grid methods with interface temporal extrapolation of ar-
bitrary accuracy and apply this framework to investigate stability of one-dimensional
diffusion equation on overlapping grids.

3. Matrix stability analysis. In this section, we develop a stability analysis
framework starting with a discretization scheme and difference equations, followed by
a matrix form notation, and finally a stability condition.

3.1. Difference equations. We consider the one-dimensional unsteady diffu-
sion equation

(3.1)
∂u

∂t
− α

∂2u

∂x2
= 0, x ∈ (−a, a), t ∈ (0, T ] , α > 0,

with initial conditions

(3.2) u(x, 0) = u0(x), x ∈ (−a, a)
and boundary conditions

(3.3) u(−a, t) = u−a(t), u(a, t) = ua(t), t ∈ [0, T ].

For the numerical solution of (3.1), the continuous function u(x, t) is discretized in
space and time, so that un

j represents the value of the corresponding discrete function
at the grid point xj at time level tn. When the subscript j is omitted, un is referred
to any numerical value, un

j , for any j, at the time level n. Throughout the paper,
j, l, m, n, p, q, K, N , and P represent integer numbers. Consider two overlapping
subdomains ΩL and ΩR, as sketched in Figure 3.1. Assume without loss of generality
that the two domains are of equal length L, where ΩL : [−a, δ/2] and ΩR : [−δ/2, a],

Fig. 3.1. Two overlapping subdomains in 1D.
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Table 3.1

Coefficients βpl and γpm for the BDFl/EXTm schemes, l = 1, . . . , 3, m = 1, . . . , 3.

βp 1 βp 2 βp 3 γp 1 γp 2 γp 3

p = 0 1 3/2 11/6

p = 1 −1 −2 −3 1 2 3

p = 2 1/2 3/2 −1 −3

p = 3 −1/3 1

δ is the size of the overlap, and L = a + δ/2. Assume as well that each subdomain
has N interior points, which are numbered with the global indices j = 1, . . . , N ∈ ΩL

and j = N + 1, . . . , 2N ∈ ΩR. Global indices j = 0 and j = 2N + 1 correspond to
the left and right boundary points of the composite domain ΩL ∪ΩR, where Dirichlet
boundary conditions are specified as un

0 = u−a(t
n), un

2N+1 = ua(t
n) according to (3.3).

To simplify the theoretical analysis, we avoid interpolation and overlap the grids so
that the grid points of ΩL and ΩR in ΩL ∩ ΩR coincide. In addition, we assume a
uniform distribution of grid points in space and time, Δx = const and Δ t = const.
The size of the overlap δ can be expressed as δ = KΔx, whereK is an integer number
equal to the number of shared interior points in each subdomain, 1 ≤ K ≤ N . We will
be referring to K as the overlap size throughout the paper. We consider a second-
order central difference scheme for discretizing the spatial derivative term in (3.1).
Stencils for the points xN and xN+1 require interface conditions to be interpolated
from the adjacent subdomain for the interface points, which are the rightmost point
of ΩL and the leftmost point of ΩR.

For the time advancement, the backward-differentiation scheme (BDF) is consid-
ered due to appearance of this scheme in our Navier–Stokes solver [10], [30]. For the
BDF scheme of the lth order, the time derivative operator is expressed as

Dl

[
∂ u

∂ t

]n
=

1

Δ t

l∑
p=0

β p lu
n−p.(3.4)

We consider explicit extrapolation for the interface terms (EXT). The extrapolation
operator of the mth order is written as follows:

(3.5) Em [u]n =
m∑

p=1

γpm un−p.

Coefficients βp l and γpm for the BDFl and EXTm schemes are listed in Table 3.1 for
l = 1, . . . , 3, m = 1, . . . , 3. The numerical scheme BDFl/EXTm for solving (3.1) on
overlapping grids is as follows:

• Standard stencil, 1 ≤ j ≤ 2N, j 	= N,N + 1,

(3.6) Dl

[
∂ u

∂ t

]n
j

− α
un
j+1 − 2 un

j + un
j−1

Δx2
= 0;

• Interface stencil, j = N ,

(3.7) Dl

[
∂ u

∂ t

]n
j

− α
−2 un

j + un
j−1

Δx2
= α

Em [u]nint L
Δx2

;
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• Interface stencil, j = N+1,

(3.8) Dl

[
∂ u

∂ t

]n
j

− α
un
j+1 − 2 un

j

Δx2
= α

Em [u]
n
intR

Δx2
;

• Interface conditions

(3.9) Em [u]nintL =
m∑

p=1

γpm un−p
N+K , Em [u]nintR =

m∑
p=1

γpm un−p
N+1−K .

3.2. Matrix form. To analyze stability of the numerical scheme (3.6)–(3.9),
consider the propagation of errors znj = un

j − u(xj , t
n), where u(x, t) is an exact

solution. The error propagation equation can be written in a matrix form followed
from (3.6)–(3.9) as

(3.10) Al z
n =

l∑
p=1

Bp l z
n−p +

m∑
p=1

Cpm zn−p,

where zn =
[
zn1 zn2 . . . znj . . . znN znN+1 . . . zn2N

]T
. Note that the errors at the boundary

of the composite domain (zn0 and zn2N+1) are identically zero with Dirichlet boundary
conditions. Matrices A l, B p l, and C pm in (3.10) have the following form:

Al = β0l I+Q,(3.11)

Bp l = −βp l I,(3.12)

Cpm = γpm PK ,(3.13)

where matrices Q and PK are defined as

(3.14) Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2s − s

− s 2s − s
. . .

. . .
. . .

− s 2s − s

− s 2s 0

0 2s − s

− s 2s − s
. . .

. . .
. . .

− s 2s − s

− s 2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.15) PK =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

. . . ← K →
0 0 s

s 0 0

← K → . . .

. . .

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

I is the identity matrix, and s = αΔt/Δx2 represents a nondimensional time step,
referred to as the stability parameter hereafter. Note that the matrix PK depends on
the overlap size K. Matrices Al, Bp l, Cpm, Q, and PK are 2N × 2N matrices.
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3.3. Stability criteria. Equation (3.10) can be rewritten as

(3.16) zn =
l∑

p=1

A−1
l Bp l z

n−p +
m∑

p=1

A−1
l Cpm zn−p

and rearranged in the following form:

zn =

P∑
p=1

A−1
l Dp lmzn−p,(3.17)

Dp lm = [Π(l + 1− p)Bp l +Π(m+ 1− p)Cpm] ,(3.18)

where P = max(l,m), and Π(x) is the “positivity function” defined as

(3.19) Π(x) =

{
1 if x > 0,
0 if x ≤ 0.

We can analyze stability of a P -level time scheme (3.17) if we write it in the form

(3.20)
[
zn zn−1 . . . zn−P+1

]T
= R lm

[
zn−1 zn−2 . . . zn−P

]T
,

where the discrete matrix Rlm equals to

(3.21) Rlm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1 X2 . . . XP−1 XP

I 0 . . . 0 0

0 I
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and Xp = A−1
l Dp lm, p = 1, . . . , P .

A necessary and sufficient condition for the iterative algorithm of (3.20) to be
stable is given by [9]

(3.22) ρ (R lm) < 1,

where ρ(R lm) is the spectral radius of the matrix R lm defined as ρ(R lm) =
maxj |λj(R lm)| (λj , j = 1, . . . , 2NP , are the eigenvalues of the matrix R lm).

4. Unconditional stability of EXT1 with BDFl, l = 1, 2. The developed
matrix stability framework can be applied to any BDFl/EXTm scheme by construct-
ing appropriate Rlm matrices and checking if stability condition (3.22) is satisfied.
The first important result of this analysis is a strong statement of unconditional sta-
bility of the BDF l/EXT1, l = 1, 2, scheme for any number of grid points N and any
overlap size K. This statement is theoretically proved in the current section.

We begin by first proving the following lemma.
Lemma 4.1. For a matrix R lm of (3.21) and a number λ 	= 0, the characteristics

polynomial |R lm − λ I(P )| is equal to

(4.1)
∣∣∣R lm − λ I(P )

∣∣∣ = λ2N(P−1)
∣∣∣A−1

l Y − λ I(1)
∣∣∣ ,

where I(P ) is a 2NP × 2NP identity matrix and Y =
∑P

p=1 Dp lm/λp−1.
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Proof. Matrix Rlm for a P -level time scheme will be referred to as Z(P ). Thus
for a one-level time scheme R lm = Z(1) , for a two-level time scheme R lm = Z(2),
and so on. Note that for the block matrix Z(P )−λ I(P ) one can write (see (3.21)) the
following:

(4.2) Z(P ) − λ I(P ) =

⎡
⎢⎢⎢⎢⎢⎣

Z(P−1) − λ I(P−1)

⎛
⎜⎜⎜⎝

XP

0
...
0

⎞
⎟⎟⎟⎠

(
0 . . . 0 I(1)

) −λ I(1)

⎤
⎥⎥⎥⎥⎥⎦ .

Using the formula for the determinant of the block matrices (if D is nonsingular),

(4.3)

∣∣∣∣ A B
C D

∣∣∣∣ = |D| ∣∣A−BD−1C
∣∣,

one can write for λ 	= 0 the following:

(4.4)
∣∣∣Z(P ) − λ I(P )

∣∣∣ = λ2N

∣∣∣∣∣∣∣∣∣∣∣
Z(P−2) − λ I(P−2)

⎛
⎜⎜⎜⎝

XP−1 +XP /λ
0
...
0

⎞
⎟⎟⎟⎠

(
0 . . . 0 I(1)

) −λ I(1)

∣∣∣∣∣∣∣∣∣∣∣
.

Applying (4.3) to the right-hand side of (4.4) P − 2 times, one gets

(4.5)
∣∣∣Z(P ) − λ I(P )

∣∣∣ = λ2N(P−2)

∣∣∣∣ Z(1) − λ I(1) X2 +X3/λ+ . . .+XP /λ
P−2

I(1) −λ I(1)
∣∣∣∣ ,

which, by the same procedure, reduces to (4.1) and the lemma is proved.
To proceed, we need the following lemma.
Lemma 4.2. Let A be a nonsingular matrix. Then the number λ is an eigenvalue

of the matrix A−1B if and only if

(4.6) |B− λA| = 0.

Proof. We first prove the necessary statement. Let λ be an eigenvalue of the
matrix A−1B. Then |A−1B−λ I| = 0. We can decompose |A−1B−λ I| = |A−1||B−
λA|, which for a nonsingular matrix A proves (4.6).

Now we prove the sufficient statement. Let (4.6) be true. Multiplying both sides
of this equation by the determinant of A−1 (which exists and is nonzero, since A is
nonsingular), we get |A−1| |B− λA| = ∣∣A−1(B− λA)

∣∣ = ∣∣A−1B− λ I
∣∣ = 0, which

proves that λ is an eigenvalue of the matrix A−1B.
The following lemma allows us to cast the analysis of the boundedness of the

eigenvalues of the matrix R lm in a convenient form.
Lemma 4.3. If λ = 1/μ is a nonzero eigenvalue of the matrix R lm, then λ� =

F (μ) is the eigenvalue of the matrix S = A l − G(μ)PK , where F (μ) and G(μ) are
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the polynomials of the form

F (μ) = −
l∑

p=1

βp l μ
p,(4.7)

G(μ) =

m∑
p=1

γpm μp.(4.8)

Proof. From Lemma 4.1, λ 	= 0 is the eigenvalue of the matrixR lm if and only if it
is the eigenvalue of the matrix A−1

l Y, because of the equivalence of the characteristic
polynomials, which by Lemma 4.2 implies that |Y−λAl| = 0, since Al is nonsingular.

Using the fact that Y =
∑P

p=1 Dp lm/λp−1 and from (3.18), (3.12), and (3.13), we
can write matrix Y as

(4.9) Y = −
l∑

p=1

βp l

λp−1
I+

m∑
p=1

γpm

λp−1
PK ,

and we get |Y − λAl| = 1/μ 2N |A l −G(μ)PK − F (μ) I| = 0, which proves that
λ� = F (μ) is an eigenvalue of the matrix S = A l −G(μ)PK .

We are now in a position to prove the following important theorem stating the
unconditional stability of EXT1 with BDFl, l = 1, 2.

Theorem 1 (stability theorem). The overlapping scheme with first-order inter-
face extrapolation and the first- and second-order BDF time integration (BDF l/EXT1,
l = 1, 2) is unconditionally stable for any number of grid points N and any overlap
size K.

Proof. According to the necessary and sufficient stability condition (3.22), the
scheme is unconditionally stable if and only if all eigenvalues λ of the matrix R l m

satisfy the condition |λ| < 1 ∀ s > 0.
If the matrix R l m has an eigenvalue λ = 0, it satisfies the condition |λ| < 1. Now

consider nonzero eigenvalues of R l m, λ 	= 0. In this case, one can use Lemma 4.3.
According to this lemma the matrix S = A l−G(μ)PK has eigenvalues λ�, which are
related to the eigenvalues λ of Rl m by the relationship λ� = F (μ), μ = 1/λ.

The matrix S = A l −G(μ)PK can be written as (cf. (3.11), (3.14), (3.15))

(4.10) S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0 l + 2s − s

− s β0 l + 2s − s
. . .

. . .
. . .

− s β0 l + 2s − s

− s β0 l + 2s 0 −G(μ) s

−G(μ) s 0 β0 l + 2s − s

− s β0 l + 2s − s
. . .

. . .
. . .

− s β0 l + 2s − s

− s β0 l + 2s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the terms−G(μ) s appear in the positions S (N,N+K) and S (N+1, N+1−K).
According to Gerschgorin’s theorem, the eigenvalues λ� of S lie within the union

of 2N disks

(4.11) |λ� − S (m,m)| ≤
∑
j �=m

|S (m, j)| , m = 1, . . . , 2N.
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Thus, λ� lies within the union of two sets, λ� ∈ U1

⋃
U2, where

U1 : |λ� − (β0 l + 2s)| ≤ 2s,(4.12)

U2 : |λ� − (β0 l + 2s)| ≤ s(1 + |G(μ)|).(4.13)

The proof proceeds by showing that both sets contain only solutions with |λ| < 1
for s > 0 for EXT1 with BDFl, l = 1, 2 schemes, thus proving the unconditional
stability of these schemes. Technical details are presented in Appendix A.

5. Stability limits. In the previous section, we proved analytically the uncon-
ditional stability of the first-order interface extrapolation scheme with the first- and
second-order time integration. The proof cannot be extended to the schemes of order
higher than EXT1 or BDF2. To judge about stability of higher-order schemes, we
must explicitly estimate the spectral radius of the matrix Rlm and check whether
the condition (3.22) is satisfied. In this section, we explicitly evaluate the spectral
radius of the matrices R lm for l = 1, . . . , 3, m = 1, . . . , 3 in order to investigate
the corresponding scheme stability at a combination of parameters s, K, and N . In
addition, we look at the ability of iterations to stabilize the unstable schemes with
EXTm, m > 1.

5.1. First-order extrapolation schemes. We first look at the dependence of
the spectral radius ρ (Rl1) on the stability parameter s for the first-order extrapolation
scheme. The stability theorem guarantees the strict stability of BDF1 and BDF2
schemes with EXT1, so ρ(Rl1) is expected to be bounded by unity for any s, K, and
N for l = 1, 2. Spectral radii of the matricesRl1 are plotted in Figure 5.1 as a function
of s for l = 1, . . . 3. One can see from Figure 5.1 that the spectral radii of the matrices
R11 and R21 are indeed bounded by unity. Incidentally, the spectral radius of R31 is
also bounded by unity for all the parameters investigated. Note that in general we do
not expect an unconditional stability of EXT1 with BDF3 or higher, since the stability
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Fig. 5.1. Spectral radii for the first-order extrapolation and BDF 1–3. Solid line, N = 8; dashed
line, N = 16; dotted line, N = 32; dash-dotted line, N = 64.



STABILITY OF GRID OVERLAPPING METHODS 3385

0 500 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

s

ρ  
(R

61
)

(a) BDF6/EXT1, K=1

0 500 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

s

ρ  
(R

61
)

(b) BDF6/EXT1, K=5

0 500 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

s

ρ 
(R

61
)

(c) BDF6/EXT1, K=10

Fig. 5.2. Spectral radii for the BDF6/EXT1 scheme. Solid line, N = 8; dashed line, N = 16;
dotted line, N = 32; dash-dotted line, N = 64.
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Fig. 5.3. Spectral radii for the second-order extrapolation. Solid line, N = 8; dashed line,
N = 16; dotted line, N = 32; dash-dotted line, N = 64.

theorem cannot be extended to these cases. Indeed, this fact can be demonstrated by
Figure 5.2, showing an instability of BDF6/EXT1 at small s for large values of K/N .

5.2. Higher-order extrapolation schemes. We now look at the stability of
higher-order extrapolation schemes. We analyze the schemes BDFl/EXTm with l =
1, . . . , 3 and m = 2, 3.

5.2.1. Spectral radii. The spectral radii of the matrices Rlm are plotted for
l = 2, 3 in Figures 5.3 and 5.4 for m = 2 and m = 3, respectively. One can see that
the higher-order extrapolation schemes become unstable with the increase in s. In
fact, for any combination of K and N there exists a critical value s� such that the
method is stable for s < s� and unstable for s ≥ s�. We call s� a critical stability
parameter or stability threshold.

5.2.2. Critical stability parameter. The dependence of critical stability pa-
rameter s� on the overlap size, K, for a given N is illustrated in Figure 5.5 for the
BDFl/EXTm schemes, l = 1, . . . , 3, m = 2, 3. One sees from the figures that for each
scheme, as long as the relative overlap size K/N is less than a certain value, s�(K)
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Fig. 5.4. Spectral radii for the third-order extrapolation. Solid line, N = 8; dashed line, N = 16;
dotted line, N = 32; dash-dotted line, N = 64.
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Fig. 5.5. Dependence of critical value s� on the overlap size K. Solid line, N = 8; dashed
line, N = 16; dotted line, N = 32; dash-dotted line, N = 64; circles correspond to empirical fit
s�(K) = s�0K

2 with parameters from Table 5.1.
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Table 5.1

Value of s�0 for the empirical fit s�(K) of (5.1) for the BDFl/EXTm schemes.

Scheme s�0
BDF1 BDF2 BDF3

EXT2 1.5 3 5
EXT3 0.39 0.78 1.3

1 10 100
K

0.1

1

10

100

1000

10000

100000
s*

Fig. 5.6. Dependence of stability limit s� on the number of overlapping points K in log-log
scale, N = 64. Black lines, second-order extrapolation; gray lines, third-order extrapolation. Solid
lines, BDF1; dashed lines, BDF2; dotted lines, BDF3; curves to the right correspond to the empirical
fit of (5.1).

plots fall on the same curve independent of N , which can be described by an empirical
power law

(5.1) s�(K) ∼ s�0 K
2,

where s�0 corresponds to the stability limit with the minimum overlap K = 1. Values
of s�0 in the power law providing the best fit are summarized in Table 5.1. Figure 5.6
shows this dependence in a log-log scale, where actual stability limits are plotted
alongside the empirical curves of (5.1) for N = 64 for different schemes. We will
show later in the paper that in a semidiscrete case an analogous quadratic scaling
Δ t� ∼ (s�0/α) δ

2 can be derived for small overlap sizes.

5.2.3. Critical overlap size. To determine the critical overlap size for which
the scaling of (5.1) is valid, we plot the value of s� versus the number of grid points
N for a constant K in Figure 5.7. It is seen that the critical overlap size value is
K/N ∼ 1/2. When K/N < 1/2, an asymptotic behavior of (5.1) independent of N is
recovered; when K/N > 1/2, the stability curves deviate rapidly from the asymptotic
value.

5.2.4. Stability regimes. The current analysis shows that there are two sta-
bility regimes. When the relative overlap size is small (K/N < 1/2; the overlap is less
than half a subdomain), the stability limit increases quadratically with K. However,
when the relative overlap is sufficiently large (K/N > 1/2), further increase of overlap
leads to an increase in the stability threshold with a much higher rate. In practice,
that would be the desired goal for stability; however, a large overlap size also increases
the computational expenses per time step, so that an appropriate compromise must
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Fig. 5.7. Dependence of stability limit s� on the number of grid points N . Solid line, K = 1;
dashed line, K = 3; dotted line, K = 5; dash-dotted line, K = 10; lines to the right correspond to
the empirical fit of (5.1) for the given value of K; circles correspond to (5.1) with K = N/2.

be found. In addition, the overlap size in practice is often limited by geometrical or
physical constraints.

5.2.5. Scheme ranking with respect to stability. Equation (5.1), Table 5.1,
and Figure 5.6 show that stability limits are the lowest for the BDF1 scheme and
increase with the order of accuracy, so that the first-order scheme is the least stable
and the third-order scheme is the most stable for the same interface conditions. On
the other hand, increasing the order of interface extrapolation destabilizes the scheme.
Thus, BDF1/EXT2 has similar stability limits as BDF3/EXT3, while BDF3/EXT2
appears to be the most stable scheme and BDF1/EXT3 the least stable scheme of
those investigated.

5.2.6. Summary. Due to complexity of the problem and influence of at least
two parameters, such as physical overlap size, K, and relative overlap size, K/N , on
stability, a simple representation of stability limits (such as a single number for each
scheme) is not possible. The most complete representation of stability results is given
by Figure 5.5, showing the dependence of stability limits s� on K for different N and
different schemes. For small overlap sizes, only one parameter becomes important,
and stability results are best indicated by (5.1), together with Table 5.1 (see also
Figure 5.6).

5.3. Influence of iterations. Numerical experiments showed that the stabil-
ity properties of higher-order extrapolation schemes can be improved significantly by
invoking an iterative loop. In this section, we show how to incorporate the pres-
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ence of iterations into the developed stability framework and analyze the influence of
iterations on stability.

If an iterative loop is introduced into the numerical scheme (3.6)–(3.9), the scheme
becomes the following:

• Standard stencil, 1 ≤ j ≤ 2N, j 	= N,N + 1,

(5.2) D̃l

[
∂ u

∂ t

]q,n
j

− α
uq,n
j+1 − 2 uq,n

j + uq,n
j−1

Δx2
= 0;

• Interface stencil, j = N ,

(5.3) D̃l

[
∂ u

∂ t

]q,n
j

− α
−2 uq,n

j + uq,n
j−1

Δx2
= α

Em [u]
q,n
int L

Δx2
;

• Interface stencil, j = N + 1,

(5.4) D̃l

[
∂ u

∂ t

]q,n
j

− α
uq,n
j+1 − 2 uq,n

j

Δx2
= α

Em [u]
q,n
intR

Δx2
;

• Interface conditions,

q = 1 : Em [u]
q,n
int L =

∑m
p=1 γpm un−p

N+K , Em [u]
q,n
intR =

∑m
p=1 γpm un−p

N+1−K ,

q > 1 : Em [u]
q,n
int L = uq−1,n

N+K , Em [u]
q,n
intR = uq−1,n

N+1−K .

In addition, u0,n = un−1, un = uqmax,n. Here q = 1, . . . , qmax is the iteration number,
and qmax is the maximum number of iterations. The time derivative operator D̃l for
the iterative schemes is slightly modified from its noniterative counterpart of (3.4):

(5.5) D̃l

[
∂ u

∂ t

]q,n
=

1

Δ t

(
β0 l u

q,n +

l∑
p=1

βp l u
n−p

)
.

One can see that for qmax = 1, one recovers the original noniterative scheme (3.6)–
(3.9). Since the noniterative scheme is unconditionally stable for m = 1, l = 1, 2, and
stable for at least s ≤ 103 for l = 3, . . . , 5, we will consider only m = 2, 3 for iterative
schemes.

5.3.1. Matrix form with iterations. To cast (5.2)–(5.5) into the matrix form,
we can write for the error znj = un

j − u(xj , t
n), analogously to (3.17),

zq,n =
P∑

p=1

A−1
l Dp lmzn−p, q = 1,

zq,n =

l∑
p=1

A−1
l Bp lz

n−p +A−1
l C11z

q−1,n, q > 1.(5.6)

Equations (5.6) can be further rewritten as

[
z1,n zn−1 . . . zn−P

]T
= T1

[
zn−1 zn−2 . . . zn−P−1

]T
, q = 1;[

zq,n zn−1 . . . zn−P
]T

= Tq

[
zq−1,n zn−1 . . . zn−P

]T
, q > 1;(5.7)
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(5.8) T1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A−1
l D1 lm A−1

l D2 lm . . . A−1
l DP lm 0

I 0 . . . 0
...

0 I
. . .

...
...

...
. . .

. . . 0
...

0 . . . 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
;

(5.9)

Tq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A−1
l C11 A−1

l B1 l A−1
l B2 l . . . A−1

l Bl l 0 . . . 0

0 I 0 . . . 0
...

. . .
...

... 0
. . .

. . .
...

...
. . .

...
...

. . .
. . .

. . . 0
...

. . .
...

...
. . .

. . .
. . . I 0

. . .
...

...
. . .

. . .
. . . 0 I

. . .
...

...
. . .

. . .
. . .

... 0
. . . 0

0 . . . . . . . . . 0 . . . 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, q > 1.

All the matrices T1 through Tqmax are (P + 1) × (P + 1) block matrices, each
block of size 2N × 2N . Additional m − l block columns appear at the right of the
matrix Tq, q > 1, if m < l. From the fact zqmax,n = zn it follows from (5.7) that

(5.10)
[
zn zn−1 . . . zn−P

]T
= T

[
zn−1 zn−2 . . . zn−P−1

]T
,

where T = Tqmax . . . T2 T1. The stability condition for the iterative schemes is
ρ (T) < 1.

5.3.2. Stability limits with iterations. The spectral radius ρ(T) for different
numbers of iterations qmax = 1, . . . , 4 is plotted in Figure 5.8 for the BDFl/EXTm
schemes with l = 2, 3, m = 2, 3, for N = 32 and K = 5. Note that qmax = 1
corresponds to the noniterative scheme. As expected, the effect of iterations is to
reduce the spectral radius and increase the stability limit. The number of iterations
sufficient to stabilize the scheme for a given s is plotted in Figures 5.9 and 5.10 for
EXT2 and EXT3, respectively. Clearly, it is easier to stabilize the schemes with
the large values of K. The number of iterations qmax decreases significantly with the
increase inK, and it also decreases with the decrease in N . Moreover, the higher-order
time integration and the lower-order interface extrapolation require fewer iterations to
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Fig. 5.8. Spectral radii for the schemes with iterations. N = 32, K = 5. Solid line, qmax = 1;
dashed line, qmax = 2; dotted line, qmax = 3; dash-dotted line, qmax = 4.
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Fig. 5.9. Number of iterations sufficient to stabilize the scheme for the second-order extrapo-
lation. Solid line, N = 8; dashed line, N = 16; dotted line, N = 32; dash-dotted line, N = 64.
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Fig. 5.10. Number of iterations sufficient to stabilize the scheme for the third-order extrapola-
tion. Solid line, N = 8; dashed line, N = 16; dotted line, N = 32; dash-dotted line, N = 64.

be stable, consistent with the previous conclusions. For K = 5, two to five iterations
are sufficient for all the schemes investigated. For K = 10, a maximum of three
iterations is required.

6. Numerical experiments. We check the obtained stability bounds by solving
(3.1) numerically in a domain x ∈ [−a, a] with initial conditions u(x, 0) = cos (π x/2)

and Dirichlet boundary conditions u(±a, t) = cos (π a/2) e−απ2t/4, which has an exact
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Fig. 6.1. L2(u) error versus computational time, s = 103.

solution u(x, t) = cos (π x/2) e−απ2t/4. We set the grid resolution to be Δx = 0.01
for all the calculations. The overlap size K and the number of grid points in each
subdomain N are the input parameters. The physical overlap size δ is then de-
termined as δ = KΔx, the length of each subdomain as L = (N + 1)Δx, and
a = (N + 1 −K/2)Δx. Unconditional stability of the EXT1 scheme for l = 1, 2 can
be demonstrated by plotting the L2 error between the numerical and exact solution

L2 (u) =
√∑2N

j=1[u
n
j − u(xj , tn)]2/(2N) versus time for s = 103; see Figure 6.1. Al-

though accuracy analysis is not the subject of the present paper, the relative overlap
size K/N might be a relevant parameter in that matter. Dependence of the error on
the BDF order for EXT1 is investigated in Figure 6.1(b) for N = 32, K = 5. The
errors are not influenced by the BDF order in a stable regime, since the temporal er-
ror is dictated by the first-order temporal accuracy of the interface extrapolation, so
that increasing the order of integration does not lead to the error reduction. (Spatial
errors are the same because of a fixed grid resolution Δx = 0.01.)

For the order of interface extrapolation higher than 1, one would expect an un-
stable behavior, according to the previous analysis. This was indeed confirmed by
the numerical experiments: the calculations with EXT2 and EXT3 were stable for
s < s�n and unstable for s ≥ s� n. Comparison of the theoretical values of s� with the
values s� n observed in the calculations is given in Table 6.1 for K = 5; the schemes
are listed in the order of least stable to most stable. One can see that the computed
stability thresholds are fairly close to the theoretical limits and, most important, they
never fall below the theoretical values. Calculated thresholds s� n sometimes exceed
the theoretical values s� due to the fact that numerical perturbations can be too small
to trigger the instability for the values of s ∈ [s�, s�n), especially for large relative
overlap sizes, K/N , for which the errors are the smallest (see Figure 6.1).

The drastic change in the scheme behavior when the stability threshold is crossed
is demonstrated in Figure 6.2(a), where L2 (u) error is plotted versus time for the
BDF3/EXT3 scheme with N = 32, K = 5 for s slightly smaller than s� n (s = 42.5,
s�n = 43) and slightly larger than s� n (s = 43.5, s�n = 43). The beginning of the
instability is clearly seen. The stabilizing influence of the iterations is demonstrated
in Figure 6.2(b), where the L2 (u) error is plotted versus the computational time for
the same case but with s = 200. The calculations with one iteration are unstable,
while the calculations with two iterations are stable, consistent with Figure 5.10(e).
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Table 6.1

Comparison of the theoretical values of s� with the numerical values s� n, K = 5.

Scheme N = 8 N = 16 N = 32 N = 64
s�/s�n

BDF1/EXT3 14/20 13/19 13/13 13/13

BDF2/EXT3 27/41 26/39 26/26 26/26

BDF3/EXT3 46/70 43/70 43/43 43/43

BDF1/EXT2 69/100 42/70 41/49 41/49

BDF2/EXT2 138/190 83/122 82/100 82/100

BDF3/EXT2 230/300 139/200 138/160 138/160

(a) Solid line, s < s (s =
42.5, s = 43); dashed line, s > s
(s = 43.5, s = 43)

0 0.2 0.4 0.6 0.8 1
Time

0

2e+012

4e+012

6e+012

L 2
(u

)

(b) Dashed line, 1 iteration; solid line,
2 iterations; s = 200.

Fig. 6.2. L2(u) error versus computational time for BDF3/EXT3 scheme with N = 32, K = 5.

7. Semidiscrete analysis. The above-mentioned stability properties were de-
rived for a central difference spatial discretization of a second-derivative term. How-
ever, similar stability behavior was observed for different spatial discretization schemes,
such as spectral elements [10]. It is likely that the observed stability characteristics
are related to temporal discretization and are somewhat independent of a spatial
scheme. To confirm that hypothesis, we performed a stability analysis of the corre-
sponding semidiscrete equation governing the error propagation, similar to the anal-
ysis of the rate of convergence of the overlapping Schwarz methods [9]. We found
that the quadratic dependence of the stability limit on the overlap size K for small
overlaps given by (5.1), as well as unconditional stability of the EXT1 scheme, can
be derived asymptotically from a semidiscrete equation. Indeed, it can be shown (see
Appendix B) that in a semidiscrete case the stability bound of a BDFl/EXTm scheme
is

(7.1) Δ t <
s�0
α

δ2, s�0 =
β0 l

ln2(γ1m)
,

which is a semidiscrete analogue to a quadratic stability bound s < s�0 K
2 of (5.1).

Thus, asymptotic semidiscrete analysis not only confirms the quadratic depen-
dence of Δt on the overlap size δ for small overlap regions but also gives the correct
trend of increasing stability limit with the order of the BDF scheme (β0 l) and de-
creasing with the order of the EXT scheme (γ1m); cf. (7.1) with Table 5.1. Note
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that Dawson, Du, and Dupont [8] also reported a similar quadratic stability bound
Δt < H2/2 independent of Δx for their patched multidomain solution of the heat
equation, where H was the parameter defining the stencil for an explicit interface
update, analogous to the overlap size in our scheme.

8. Discussion.

8.1. Diffusion equation. In the present paper, we have developed a matrix
framework for stability analysis of numerical schemes on overlapping grids that employ
temporal extrapolation of interface terms of order m (EXTm). We have used the
developed framework to analyze the stability properties of BDFl/EXTm schemes
applied to a one-dimensional diffusion equation. Our findings with respect to stability
properties of this class of schemes are as follows:

• First-order interface extrapolation (EXT1) with first- and second-order time
integration (BDF1, BDF2) is unconditionally stable for any number of grid
points and any overlap size, as theoretically proved in section 4.
• It was shown by explicitly evaluating matrix eigenvalues that the time inte-
gration schemes up to fifth order with EXT1 retain the stability properties of
the lower-order schemes for the range of parameters investigated, while the
sixth-order BDF scheme with EXT1 was found unstable for large values of
K/N for the same range of parameters.
• For higher-order interface extrapolation (EXTm, m > 1), the numerical
schemes become unstable as the time step (equivalently, stability parame-
ter s) increases. By evaluating the spectral radius for increasing values of
s, we have established the critical stability conditions for the BDFl/EXTm
schemes with l = 1, . . . , 3, m = 2, 3. We discovered that the stability limit
increases quadratically with the size of the overlap K as long as K/N < 1/2,
and with a much higher rate when K/N > 1/2.
• Semidiscrete analysis confirms the observed properties of quadratic depen-
dence of the stability limit on the overlap size, as well as the unconditional
stability of the EXT1 scheme for small overlaps, thus showing that the derived
stability characteristics are the consequence of the temporal discretization
and are somewhat independent of spatial discretization of a second-derivative
term.
• It was also found that the stability limit can increase significantly if an iter-
ative loop is invoked. In practice, for reasonable overlap sizes (K ≥ 5) and
number of grid points (N ≤ 64), two to five iterations are sufficient to com-
pletely stabilize the scheme for the nondimensional time step s = αΔt/Δx2

at least as big as 103.
• Numerical experiments confirm the theoretical conclusions.

The question was raised in the introduction about the utility of Schwarz itera-
tions with overlapping schemes. From the previous discussion, we have established
that Schwarz iterations are beneficial for stability or accuracy considerations, or both.
We have also commented that they are not required from the accuracy standpoint for
the “consistent” schemes [43] (schemes where the difference between physical quanti-
ties due to interface conditions is of the same order of accuracy as that of the overall
solution method). With this definition, BDFl/EXTm with m ≥ l would be consid-
ered consistent, but in practice it is more suitable to use BDFl/EXTl schemes, since
increasing the interface conditions accuracy beyond the time integration accuracy is
associated with extra costs and does not increase the overall accuracy of the scheme.
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The findings in this paper allow us to make two important conclusions concern-
ing practical use of consistent numerical schemes on overlapping grids for parabolic
equations and necessity of Schwarz iterations.

The first conclusion is that the first-order accuracy consistent scheme, BDF1/EXT1,
is unconditionally stable without iterations. Therefore, one can obtain a strictly sta-
ble and computationally efficient first-order scheme without the need for Schwarz
iterations.

The second conclusion is that higher-order schemes, BDF2/EXT2 and higher,
are not unconditionally stable. To use them, one can either choose a time step below
the critical value (note that stability bounds dictated by the observed “parabolic”
instability are generally quite high and not restrictive) or stabilize the scheme with
iterations at any time step (as analysis in this paper shows, in most cases the scheme
can be stabilized with two to five iterations). Both these strategies are more efficient
than employing BDFl with EXT1 (unconditionally stable) and using Schwarz itera-
tions until convergence to increase the accuracy to that of a consistent scheme. As
discussed earlier, driving Schwarz iterations to convergence can be an expensive pro-
cedure, sometimes requiring tens or hundreds of iterations [39], and is not justifiable.

8.2. Implication for Navier–Stokes equations. The developed matrix sta-
bility analysis framework is generally extendable to more complicated situations, in-
cluding hyperbolic equations, nonuniform grids, presence of spatial interpolation op-
erators, and higher dimensions, by modifying the coefficient matrices corresponding
to new discrete relations. Extension to nonlinear equations is also possible by the
method of frozen coefficients [20], [23].

An interesting question is how the stability properties change when a convective
term is added to the diffusion equation and it becomes more and more hyperbolic, since
this situation is more representative of true Navier–Stokes equations. To answer this
question, we have investigated stability properties of a purely hyperbolic advection
equation ∂ u/∂ t+ a ∂u/∂x = 0.

A general answer is that stability properties of an advection equation solved on
overlapping grids with BDFl/EXTm scheme largely depend on a convective term dis-
cretization. Thus, for upwind discretization of a convective term, stability properties
of the underlying single-grid scheme do not change with the addition of overlapping
grids. BDF schemes with a convective term treated implicitly (unconditionally stable
for a single grid for BDFl, l = 1, 3) remain unconditionally stable with overlapping
grids with EXTm, m = 1, 3. BDF schemes with a convective term treated explicitly
(stable under appropriate time-step constraint) remain stable under the same time-
step constraint with overlapping grids. However, BDF schemes with a convective term
treated with a central scheme (implicitly, since the explicit central scheme is always
unstable on a single grid) exhibit completely different behavior. Note that even an im-
plicit central scheme can be unstable on a single grid for BDF3 at Ca < C� and stable
for Ca > C� (Ca = aΔ t/Δx), opposite a “conventional” stability behavior, due to
the presence of purely imaginary eigenvalues (BDF1, 2 are unconditionally stable on a
single grid) [9]. In the presence of overlapping grids, all BDFl, l = 1, 3, schemes exhibit
the similar behavior of being unstable for Ca < C� and stable for Ca > C� for EXTm,
m = 1, 3. Stability limit C� depends on numerical parameters and can reach up to
fairly large values (C� > 103 for some schemes at small overlaps), making the central
scheme not an ideal choice for solving hyperbolic equations, especially on overlapping
grids. Stability conditions derived for linear hyperbolic equations can be extended to
nonlinear equations by bounding CU = UΔ t/Δx < C�, where U = maxu.
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What happens with the advection-diffusion equation depends largely on the rela-
tive importance of convective to diffusive terms determined by Péclet (Pe = U L/α)
or Reynolds (Re = U L/ν) number. It was observed that at small Péclet numbers
(Pe ≺ 10), viscous (parabolic) stability would dominate, and at large Péclet numbers
(Pe � 1000), convective (hyperbolic) stability would play a role. At intermediate
Péclet numbers, both instabilities counteract, and the overall pattern is more com-
plex. The diffusion-dominated situation investigated in the current paper would thus
fall into a low-Reynolds-number regime for Navier–Stokes equations. As mentioned
in the introduction, the instability of second- and third-order temporal interface ex-
trapolation schemes and complete robustness of the first-order scheme was observed
in a spectral element Navier–Stokes solver [10] at low Reynolds number Re ∼ 10.
At higher Reynolds numbers the situation might change, and further studies are re-
quired to relate behavior of Navier–Stokes equations discretized on overlapping grids
to theory in a more advection-dominated regime.

Appendix A. Stability theorem. In this appendix, we present the algebra
involved in proving Theorem 1 (stability theorem). In particular, we show that the
sets U1 and U2 given by (4.12) and (4.13) contain only the eigenvalues satisfying
|λ| < 1 for s > 0 for EXT1 with BDFl, l = 1, 2.

Set U1. Let us first consider the set U1 given by condition (4.12). In what follows,
we prove that this condition implies, for s > 0, |μ| > 1 or |λ| < 1.

Condition (4.12) means that λ� lies inside the disk with the center at β0 l + 2s
and the radius of 2s. Therefore,

(A.1) Re(λ�) ≥ β0 l,

where Re(λ�) denotes the real part of λ�. Equality occurs when s = 0. Since λ� =
F (μ), (A.1) for s > 0 is equivalent to

(A.2) Re {H(μ)} < 0,

where

(A.3) H(μ) = β0 l − F (μ) =

l∑
p=0

βp l μ
p

(cf. (4.7)). We will prove that (A.2) implies |μ| > 1 for BDFl, l = 1, 2, that is, if
|μ| ≤ 1, then Re {H(μ)} ≥ 0.

Consider the complex number μ in the exponential form μ = r eiφ. Then Re {H(μ)}
can be written as

(A.4) Re {H(μ)} =
l∑

p=0

βp l r
p cos (p φ).

We can write Re {H(μ)} as a polynomial of ξ = cos(φ) as

(A.5) Re {H(μ)} =
l∑

p=0

β̃p l(r) ξ
p,

where the polynomials β̃p l(r) can be obtained from the coefficients βp l and the powers
of r by using the corresponding multiple-angle formulas for cos(p φ). Now let us
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consider the complex numbers μ lying on the unit circle (|μ| = 1):

(A.6) Re {H(μ)}|μ|=1 =
l∑

p=0

β̃p l(1) ξ
p.

We denote

(A.7) Pl(ξ) =
l∑

p=0

β̃p l(1) ξ
p

and show that for BDFl, l = 1, 2, Pl(ξ) = (−1)l
l

Π
p=1

(ξ − 1). From (A.4) we have

(A.8) Re {H(μ)}|μ|=1 =

l∑
p=0

βp l cos (0− p φ).

Comparing the series
∑l

p=0 βp l cos (0−p φ) with (3.4), one can see that it corresponds
to the discrete BDF l derivative operator for f(t) = cos (t):

(A.9) Re {H(μ)}|μ|=1 = Dl

[
d cos(t)

d t

]
t=0

·Δ t.

By construction of the discrete lth-order derivative operator with Δt = φ,

(A.10) Re {H(μ)}|μ|=1 =
d cos(t)

d t
|t=0 · φ+O(Δt l) · φ = O(φ l+1),

where O(φ l+1) are the terms of the order l + 1 and greater.
Now recall that Re {H(μ)}|μ|=1 can be considered as an lth-order polynomial of

ξ = cos (φ), Pl(ξ) (equations (A.6), (A.7)). According to the fundamental theorem of
algebra, this polynomial has l roots and can be factorized as

(A.11) Pl(ξ) = β̃ll(1)
l

Π
p=1

(ξ − ξp),

where ξp is the pth root of the polynomial. Expanding ξ = cos(φ) in a Taylor series
in φ, ξ = 1− φ2/2+O(φ4), and substituting into (A.11), one gets

(A.12) Pl(ξ) = β̃ll(1)
l

Π
p=1

(
1− ξp − φ2

2
+O(φ4)

)
.

Since Pl(ξ) = Re {H(μ)}|μ|=1 contains only terms of (l + 1)th-order and higher in
φ (cf. (A.10)), at least �(l + 1)/2� of its roots must be equal to one. For l = 1, 2,
�(l+1)/2� = l, meaning that all its roots are equal to one, and Pl(ξ) can be factorized
as

(A.13) Pl(ξ) = (−1)l
l

Π
p=1

(ξ − 1),

since β̃11(1) = β11 = −1 and β̃22(1) = 2 β22 = 1.
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Now we show that the function Re {H(μ)} ≥ 0 ∀ |μ| ≤ 1 for BDFl, l = 1, 2. We
can write (A.5) as

(A.14) Re {H(μ)} =
l∑

p=0

β̃p l(1)(r ξ)
p +

l∑
p=0

β′
p l(r)ξ

p,

where β′
p l(r) = β̃p l(r) − β̃p l(1) r

p. The first summand of (A.14),
∑l

p=0 β̃p l(1)
(r ξ)p, corresponds to the polynomial Pl(r ξ) of (A.7). Using the factorization of
(A.13), one can write Pl(r ξ) for l = 1, 2 as

(A.15) Pl(r ξ) = (−1)l
l

Π
p=1

(r ξ − 1) ≥ 0,

since r ξ = r cos(φ) ≤ 1 for r ≤ 1. One can easily see that for l = 1,
∑l

p=0 β
′
p l(r)ξ

p =

0, and for l = 2,
∑l

p=0 β
′
p l(r)ξ

p = β2 2(1 − r2) ≥ 0 for r ≤ 1, thus proving that
Re {H(μ)} ≥ 0 ∀ |μ| ≤ 1 for BDFl, l = 1, 2. Therefore, condition (A.2) implies
|μ| > 1, and the set U1 contains only the eigenvalues |λ| < 1 for s > 0.

Set U2. Now let us consider the set U2 described by the condition (4.13). This
condition means that λ� lies inside the disk with the center at β0 l+2s and the radius
of s+ s|G(μ)|. If |G(μ)| ≤ 1, the set U2 ⊆ U1 and thus contains only the eigenvalues
with |λ| < 1 for s > 0by the previous analysis.

Now consider the case

(A.16) |G(μ)| > 1.

For the first-order interface extrapolation scheme, m = 1, G(μ) = μ (equation 4.8),
and (A.16) reads |μ| > 1, that is, |λ| < 1.

Thus, both sets U1 and U2 contain only the eigenvalues with |λ| < 1 for BDFl,
l = 1, 2, and EXTm, m = 1, which finishes the proof of the stability theorem.

The fact that the polynomial Pl(ξ) of (A.7) can be factorized in the form (A.13)
only for l = 1, 2 makes the proof unextendable to higher l cases. Indeed, for BDFl/EXTm
schemes with l > 2 it is no longer true that Re{H(μ)} ≥ 0 ∀ |μ| ≤ 1, that is,
∃ |μ| ≤ 1 : Re{H(μ)} < 0. For example, for μ = 0.97 e i, Re{H(μ)} = −0.025 for
BDF3, Re{H(μ)} = −0.128 for BDF4, and so on. Hence, the set U1 might contain
solutions with |μ| ≤ 1, or |λ| ≥ 1.

For BDFl/EXTm schemes with m > 1 it is no longer true that G(μ) = μ.
Therefore condition |G(μ)| > 1 no longer implies |μ| > 1. Thus, for the EXT2 scheme
with G(μ) = 2μ − μ2, μ = i/2 results in |G(μ)| = √17/4 > 1. Hence, the set U2

might contain solutions with |μ| ≤ 1, or |λ| ≥ 1. These remarks imply that the proof
of unconditional stability cannot be extended to the schemes with l > 2 and m > 1.

Appendix B. Derivation of a semidiscrete stability bound. In this ap-
pendix, we derive a semidiscrete stability bound given by (7.1). In the derivation,
please keep in mind that quadratic stability bound s < s�0 K

2 in a discrete case cor-
responds to Δ t < s�0 δ

2/α in a semidiscrete case and a “small overlap size” condition
K/N < 1/2 corresponds to δ/(a+ δ/2) < 1/2.

For the BDFl schemes, the semidiscrete error propagation equation is the ordinary
differential equation

(B.1)
d2zn

d x2
=

β0 l

αΔ t
zn,

where zn(x) is the error at time level tn. Consider the left subdomain [−a, δ/2] (see
Figure 3.1 for the domain sketch), since by symmetry the right subdomain possesses
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the same solution with x − a replaced by a − x. Equation (B.1) admits a general

solution of the form znL(x) = A1 e
−
√

β0 l
αΔt x+A2 e

√
β0 l
αΔt x, where the subscript L stands

for the left domain. Since znL(−a) = 0, we get

(B.2) znL(x) = znL(δ/2)
e

√
β0 l
αΔt (x+a) − e−

√
β0 l
αΔt (x+a)

e

√
β0 l
αΔt (δ/2+a) − e−

√
β0 l
αΔt (δ/2+a)

.

Consider the overlap region [−δ/2, δ/2], where the error dominates. For small overlap
sizes x+ a ≥ a− δ/2 > 2 a/3 in the overlap region, and one can neglect the decaying

exponent e−
√

β0 l
αΔt (x+a) with respect to the growing exponent and write the solution

as

(B.3) znL(x) ∼ znL(δ/2) e

√
β0 l
αΔt (x−δ/2).

Let us follow the error propagation from n = 0 onward. To construct the solu-
tion for the first time level, we use a simple time-lagging scheme (or EXT1). Thus,
boundary conditions are z1L(δ/2) = z0R(δ/2) = z0L(−δ/2) (subscript R stands for
the right domain, and z0L(x) and z0R(x) represent initial error functions possessing
x−a→ a−x symmetry), and the error for the first time level in [−δ/2, δ/2] is z1L(x) ∼
z0L(−δ/2) e

√
β0 l
αΔt (x−δ/2). If one continues with the EXT1 scheme, one obtains znL(x) ∼

z0L(−δ/2) e−(n−1)

√
β0 l
αΔt δe

√
β0 l
αΔt (x−δ/2). Thus the error ratio is ||znL(x)||∞/||z0L(x)||∞ ≤

|e−(n−1)

√
β0 l
αΔt δ| < 1, making the EXT1 scheme stable for at least small overlap re-

gions, for which neglecting the decaying exponent is justified. Our findings confirm
this conclusion: EXT1 is unconditionally stable for BDF 1–2, is stable for BDF 3–5
for the considered range of parameters, and instabilities of BDF6/EXT1 were revealed
only for large, and not for small, overlap sizes.

If we consider the EXT2 scheme, the boundary conditions at time step n = 2 will
be

(B.4) z2L(δ/2) = 2 z1L(−δ/2)− z0L(−δ/2) = z0L(−δ/2)
(
2 e−

√
β0 l
αΔt δ − 1

)
,

and the solution in [−δ/2, δ/2] is z2L(x) ∼ z0L(−δ/2)(2 e−
√

β0 l
αΔt δ−1) e

√
β0 l
αΔt (x−δ/2). De-

noting ξ = e−
√

β0 l
αΔt δ, we have ||z2L(x)||∞/||z0L(x)||∞ < 2 ξ. Proceeding with the EXT2

scheme, one gets z3L(x) = z0L(−δ/2) (4 ξ2−3 ξ) e
√

β0 l
αΔt (x−δ/2), and ||z3L(x)||∞/||z0L(x)||∞

< (2 ξ)2. Proceeding similarly, one can obtain

(B.5) ||znL(x)||∞/||z0L(x)||∞ < (2 ξ)n−1.

Analogously, one can show that in general for an EXTm scheme

(B.6) ||znL(x)||∞/||z0L(x)||∞ < (γ1m ξ)n−1.

For a stable scheme, one needs γ1m ξ < 1, leading for γ1m 	= 1 to

(B.7) Δ t <
s�0
α

δ2, s�0 =
β0 l

ln2(γ1m)
.

Note that for large overlap sizes the decaying exponent e−
√

β0 l
αΔt (x+a) in the solution
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for the error can no longer be neglected in [−δ/2, δ/2], since a − δ/2 can be small,
invalidating the previous analysis. Hence, the derived quadratic scaling of bound on
Δ t and stability of EXT1 scheme in a semidiscrete case applies only to small overlap
sizes.
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