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High-Order Moving Overlapping Grid Methodology

for Aerospace Applications

Brandon Merrill∗, Yulia Peet†

The development of a three dimensional spectrally accurate moving overlapping grid
technique that is utilized to solve for the flow around complex moving geometries opens
doors to various practical applications that have previously been difficult to model. This
method provides a straightforward approach to managing grid resolution near moving struc-
tures without the need for mesh restructuring techniques. Building upon our previously
validated overlapping mesh methodology, we have developed a moving overlapping mesh
method in a high-order spectral element computational fluid dynamics solver. Current
validation tests on the two dimensional moving overlapping grid methodology have shown
spectral accuracy of the coupled solution for both translating and rotating meshes, and re-
sults for fluid interactions with translating structures that correlate well with experimental
and other computational data. A three dimensional simulation demonstrates robustness of
the method and the ability to represent flow around complex structures moving in complex
ways, paving the way to accurately model the flow through a rotating wind turbine.

I. Introduction

The ability to flexibly and efficiently model the interaction of fluid with moving structures allows for
analysis of numerous problems that have previously been very difficult to simulate. The motion of a three
dimensional mesh able to move with six degrees of freedom (translational and rotational) envelops the
possibility to model a wide range of useful applications spanning from the flow around helicopter blades, wind
turbines, propellers, to flows in engines, mixed tanks, stirred reactors, and much more. The use of moving
overlapping grids, especially when one or both of the grids contain solid bodies, enables a straightforward
approach to managing grid resolution near walls without the need for grid restructuring techniques.

The earliest known technique in domain decomposition methods was developed by Schwarz in 1870 with
the introduction of the Schwarz Alternating Method. Schwarz provided a foundation upon which almost all
other domain decomposition methods are built. Additional fundamental work with overlapping grids was
performed in the 1960’s by Volkov1 who called his technique the Composite Mesh Difference Method that
used finite difference methods on overlapping two dimensional grids. Since that time, many others have
built upon his work improving the Composite Mesh Difference Method.2–4 This work in composite mesh
methods led to the development of techniques like those produced by Henshaw et al.5 Henshaw’s work
involves a moving overlapping grid technique in two dimensions which utilizes boundary fitted grids that
move on an overlapped stationary background Cartesian grid where one grid determines data for adaptive
mesh refinement. Their method uses a second order extension of Godunov’s method with adaptive mesh
refinement for spatial discretization. Another derivation of multigrid methods is employed by Rivera et
al.6 who has developed a sliding mesh technique for finite element simulations. Their technique utilizes
three dimensional meshes that remain adjacent to each other, without overlap, and one mesh is constrained
to move. When using this method for rotational motion, the rotating mesh must necessarily be circular.
Additional research has been performed by many others using sliding mesh techniques to simulate three
dimensional flows with complex geometries.7–9 In addition, there has been much work done with respect
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to moving objects on a single mesh using numerous methods including the Arbitrary Lagrangian-Eulerian
method.10–13 Our research will improve upon previous methods by using the Spectral Element Method
on three dimensional meshes, which maintains spectral accuracy for spatial discretization, and by utilizing
moving overlapping grid techniques with spectral interpolation for flexibility of motion, and computational
efficiency.

Our research builds upon a domain decomposition technique employed within the computational fluid
dynamics (CFD) code, Nek5000, developed at the Mathematics and Computer Science Division of Argonne
National Laboratory.14 The governing equations of incompressible fluid flow (the incompressible Navier-
Stokes equations) will be expressed using the Eulerian formulation for stationary meshes, which requires
the computational domain to be fixed in space, and for moving meshes, the Arbitrary Lagrangian-Eulerian
formulation is used, which allows the velocity of the mesh to be arbitrarily specified. In all overlapping cases,
the values at the subdomain interfaces are handled using spectral interpolation with an explicit extrapolation
method.

Building upon our overlapping mesh methodology, work was done to enable the use of moving meshes.
We used an Arbitrary Lagrangian-Eulerian formulation as a platform for handling non-stationarity of the
mesh. We have also performed simulations to test the stability and validity of the code. Convecting eddy
simulations were used to verify the spatial and temporal accuracy of the method. The capacity to accurately
represent interaction of fluid with the moving bodies was investigated using simulations representing a two
dimensional oscillating cylinder in uniform flow. Robustness and flexibility of the method, in preparation
for modeling wind turbine flows, is demonstrated by a simulation of two rotating cylinders in a uniform flow
field.

In this paper, we present the details and results of work done in the development and validation of our
moving overlapping grid methodology. Section II will give an overview of the techniques and formulations
used to develop the moving overlapping mesh methods. Section III presents the current work done in
validating our moving overlapping mesh method and Section IV will conclude with a brief summary and an
overview of intentions for future work.

II. Methods

Our moving overlapping mesh method is employed within the Nek5000 computational fluid dynamics
framework14 which utilizes the Spectral Element Method for spatial discretization, and allows for up to third
order temporal discretization for solutions to the incompressible Navier-Stokes equations 1. It improves upon
our stationary overlapping mesh methodology by allowing for rotation and/or translation of one of the grids.

∂u
∂t + u · ∇u = −∇p + 1

Re∇
2u

∇ · u = 0 (1)

II.A. Handling Interfaces Between Meshes

Values at mesh interfaces are determined using spectral interpolation on values from previous timesteps.
The location of a point on the interface of domain one (Ω1) is found in terms of the local coordinates of the
corresponding element in Ω2 by treating it as an optimization problem and minimizing residuals with the
Newton-Raphson method.15 Explicit interface extrapolation (IEXT) is carried out using the values interpo-
lated from data at previous timesteps, with up to third order extrapolation. The mth order extrapolation
operator is given in equation 2 with the coefficients γpm given in table 1.

Em [u]
n

=

m∑
p=1

γpmu
n−p (2)

Stability of the extrapolation method has been examined using the one-dimensional unsteady diffusion
equation on two overlapping domains with uniform point distribution. The grids overlapped to ensure
the grid points in the two domains coincided. The stability for the extrapolation scheme in the study
was confirmed analytically to be unconditionally stable for first order extrapolation with the backwards-
differentiation scheme of first or second order. For higher orders, the stability is dependent upon the mesh
overlap size and the number of extrapolation iterations.16
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Table 1. Coefficients for the EXTm schemes, m=1,2,316

γp1 γp2 γp3

p=1 1 2 3

p=2 -1 -3

p=3 1

II.B. Arbitrary Lagrangian-Eulerian Formulation

The Arbitrary Lagrangian Eulerian (ALE) formulation attempts to combine the attractive properties of both
the Lagrangian formulation, where the reference system is attached to ’particles’ in the fluid, and Eulerian
formulation, where the reference system is fixed in space. Its main advantage is the ability to assign an
arbitrary velocity to the mesh. The velocity assigned to the mesh can be determined by some property
of the flow, or it can be predetermined and its movement unaffected by the flow. The explanation and
derivation of the ALE formulation below follows the general process given by Deville et al.17

The material derivative of a variable, f, given by

Df

Dt
=
∂f

∂t
+ u · ∇f (3)

where u(x, t) is the velocity of the fluid in the Eulerian formulation, describes the time evolution of f attached
to material points. If a mesh is given a velocity of w(x, t) that is not equal to u(x, t), a pseudo-material
derivative can be given for the mesh, as if virtual particles were attached to the moving mesh, which we will
call the ALE derivative

δf

δt
=
∂f

∂t
+ w · ∇f (4)

Note that if w(x, t) = 0 we recover the Eulerian description, or simply the partial time derivative, and if
w(x, t) = u(x, t) we arrive at the material derivative in the Lagrangian description. A relative velocity, c
(sometimes called the convective velocity), can be defined with respect to the reference frame of the moving
mesh

u = c + w. (5)

The relationship between the material and ALE time derivative can then be given as

Df

Dt
=
δf

δt
+ c · ∇f (6)

To account for mesh movement, the convective terms in the Navier-Stokes equations must be altered to
reflect the new relative velocity, c.12 Since density is held constant for incompressible flow, the convective
term of the mass conservation equation is zero, and therefore, there is no change in the continuity equation.
The momentum conservation equation becomes

δu

δt
+ c · ∇u = −∇p +

1

Re
∇2u (7)

where c is defined in equation 5. Again, note that if mesh velocity w is equal to zero, the original Navier-
Stokes equations 1 are recovered.

II.C. Communicating Updates

Building upon the ALE formulation and interpolation schemes developed previously, additions and modifi-
cations were made to allow the two methods to work together. In the original multimesh method, the spatial
coordinates of each interface node are passed to the corresponding processors once at the beginning of a
simulation. Since the coordinates are constantly changing in the moving mesh formulation, modifications
were made so that the new coordinates are passed during each timestep. This allows the velocities to be
correctly interpolated/extrapolated during movement of the mesh.
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III. Results: Moving Overlapping Meshes

III.A. Walsh’s Eddies

The first moving mesh benchmark models the convecting solution to Walsh’s eddies18 on two overlapping
meshes, with the inside mesh either rotating or sliding. The initial conditions are given by the stream
function in equation 8,

ψ(x, y) = −1

5
Cos[5x] +

1

4
Sin[3x]Sin[4y]− 1

5
Sin[5y] + u0y − v0x (8)

giving exact solutions for the velocities of the convecting eddies

u(x, y) = e−25tν(−Cos[5y] + Cos[4y]Sin[3x]) + u0

v(x, y) = e−25tν(−Sin[5x]− 3

4
Cos[3x]Sin[4y]) + v0. (9)

This case was used to determine spatial and temporal accuracy and to ensure that the interpola-
tion/extrapolation was carried out correctly for moving overlapping meshes without the presence of any
solid objects. Note that although the mesh is moving, there are not any physical structures attached to it,
so it may be considered virtual movement since the movement of the mesh should have no affect on the flow.
The original mesh configurations (at t=0) are shown in figure 1. The exterior mesh contains a vacancy in
the center that is covered by the interior mesh.

(a) Circular interior mesh (b) Square interior mesh

Figure 1. Two-mesh domains

The second order extrapolation scheme was used, and the angular velocity was fixed at π
4 for studying

the spatial and temporal convergence of the method for the rotating cases. The velocity spatial convergence
plots for both the square and circular rotating interior mesh simulations are shown in figure 2 with the
non-rotating case results for comparison. The plots show spectral convergence and trends that correspond
well to the stationary mesh data. The temporal accuracy, shown in figure 3 shows the expected second order
convergence. Analysis of the pressure accuracy (not shown here) gives comparable results for both spatial
and temporal convergence. The results from sliding mesh cases (not shown here) also show spectral accuracy
for spatial discretization, and the expected second order temporal convergence. We see that the convergence
rates of the underlying Spectral Element Method solver are maintained with the addition of our moving
overlapping mesh method.

III.B. Oscillating 2D Cylinder in Uniform Flow

Since the earliest research performed by G Magnus19 in 1852, a certain fascination has accompanied the
research seeking to understand the flow around moving cylinders. The topic of oscillating or vibrating
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(b) Circular interior mesh

Figure 2. Velocity spatial accuracy for rotating interior mesh simulations using second order time-stepping and EXT.
’St’ indicates a stationary mesh case.
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(b) Circular interior mesh

Figure 3. Velocity temporal accuracy for rotating interior mesh simulations using a polynomial order of approximation
of 18. ’St’ indicates a stationary mesh case.

cylinders in cross-flow has been the subject of several experimental and computational studies.20–24 In 1998,
Blackburn et al. published results from an oscillating cylinder simulation that utilized a spectral elements
code.25 Their results, along with other published data, established detailed characteristics of the flow which
allowed for comparison and validation of the present work.

For our oscillating cylinder simulations, the domain is assigned a uniform free stream velocity U at the
left boundary with outflow conditions assigned on the opposing side. Symmetry boundary conditions are
imposed on the top and bottom of the domain. Spatial units and the amplitude of the cylinder oscillation
are non-dimensionalized by the diameter of the cylinder. The horizontal velocity of the cylinder is set to
zero, while the vertical component of motion is governed by the equation

y(t) = y0 +Asin(2πf0t), (10)

where A represents the amplitude and f0 represents the frequency of oscillation. The cylinder is initially
placed at (0,0), and the domain spans from x = −10 to 50 diameters, and from y = −15 to 15 diameters.

The exterior mesh (see fig. 4) contains a vacancy where the cylinder is placed, and the interior mesh
was constructed around the 2D cylinder. During the simulations, the exterior mesh remained stationary
while the prescribed motion of the interior mesh caused it to move with the equation of oscillation given
by equation 10. The first task involved retrieving the Strouhal number from flow around the stationary
cylinder. For a Reynolds number of 200, our simulations produced a Strouhal number of 0.1998 compared
with the Strouhal number found in Udaykumar et al.24 of 0.198 and the value found in Williamson et al.23

of 0.197. The mean drag of our simulation was 1.372, while Udaykumar et al.24 report a value of 1.38.
The drag and lift on an oscillating cylinder in a uniform cross-flow changes with time. However, after a

sufficient startup time, the solution reaches an asymptotic state, indicated by values that repeat periodically
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(a)
Inte-
rior
mesh

(b) Exterior mesh

Figure 4. Geometry of the oscillating cylinder case

according to the motion of the cylinder. The results published in Blackburn et al.25 include detailed
information about the mean drag forces, the peak lift forces, and the mean pressure differences on the
cylinder. Using the Strouhal number from stationary mesh simulations, the oscillation frequency of the
cylinder is expressed as a ratio of the fixed-cylinder vortex shedding frequency. Table 2 compares the
oscillating cylinder results with the results published by Blackburn et al.25 for a frequency ratio of 1.0 and
non-dimensional amplitude 0.25. The label Ĉl represents the peak coefficient of lift, Cd is the mean coefficient
of drag, and Cpb is the mean base pressure coefficient calculated from the pressures at the furthest upstream
(p0) and downstream (p180) points on the cylinder surface, Cpb = 1 + 2(p180 − p0)/ρU2.

Blackburn et al. Present Data

Ĉl 1.776 1.781

Cd 1.414 1.417

−Cpb 1.377 1.377

Table 2. Results for an oscillating cylinder with Re = 500, F = 1 and A = 0.25 in uniform flow compared with results
from Blackburn et al.25

Figure 5. Zoomed-in velocity magnitude plot of a cylinder oscillating with properties: A = 0.25, F = 1, Re = 500

The velocity magnitude plot in figure 5 illustrates the vortices that are shed from an oscillating cylinder
with a non-dimensional amplitude, A = 0.25 and a frequency ratio, F = 1.0, with a Reynolds number,
Re = 500. The frequency of vortex shedding, the forces and pressure on the cylinder, and other flow
characteristics correlate very well with available published data.
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One primary benefit of our overlapping moving mesh method is the ability to model flows that are
difficult or impossible to simulate using traditional methods, such as the flow around solid bodies moving
with extreme ranges of motion. Figure 6 shows the velocity magnitude data from a case with a remarkably
large amplitude ratio (A=2.5), much larger than any presently found published data. The overlapping
moving mesh method gives accurate results for simulations containing solid bodies, and can simulate flows
with extreme solid body motions that are impossible to model using traditional techniques.

Figure 6. Velocity magnitude representation of the global domain for a cylinder oscillating with properties: A = 2.5,
F = 1, Re = 200

III.C. Rotating 3D Cylinders

One of the benefits of an overlapping moving mesh method is the ability to accurately model fluid flow
for cases involving a complex solid body geometry moving in a complex manner. One such situation is
a horizontal axis wind turbine (HAWT). A future goal of the present project is to attain accurate data
regarding the blade-wake, and wake-wake interactions in the flow through a rotating HAWT. To ensure
that the method is adequately accurate and robust for these types of three dimensional rotational flows a
preliminary test was performed using two cylinders exhibiting a similar motion to a rotating wind turbine.

The interior mesh, whose enlarged cross-section is shown in figure 7(a), was constructed around two 3-
dimensional cylinders with diameter D, and the distance between the far ends of the two cylinders is 11D. The
nearest node normal to the surface of the cylinders is approximately 0.03D away. The spatial resolution at
the cylinder walls includes 10 elements in the span-wise direction of each cylinder and 16 elements radially
around each cylinder. Note that the solution within each element is computed at several Gauss-Lobatto
points, the number determined by the polynomial order of approximation established before the simulation
is executed. The exterior mesh, a selection of which is shown in figure 7(b), contains a vacancy that is
covered by the interior mesh . The global domain extends 30D upstream of the rotating cylinders and 50D
downstream of the rotating cylinders, and the sides of the domain extend from -30D to 30D. The resolution
of the interior mesh is much finer than that of the exterior mesh allowing greater ability to capture accurate
solutions in the boundary layer.

Figure 8 depicts the vortices in the wake at the -0.05 λ2 isosurface using second order extrapolation. The
flow at the inlet of the domain is set to uniform velocity U, the tip speed ratio (TSR) of the rotating cylinders
is 0.55, and the Reynolds number (Re = ρUD/µ) is 200. Realistic wind turbine flows have considerably larger
Reynolds numbers, and thus in subsequent wind turbine simulations the mesh will be refined to adequately
capture the small scale fluctuations, especially in the boundary layer region near the blade walls.
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(a) Enlarged cross-section of the inte-
rior mesh

(b) Selection of exterior mesh

Figure 7. Geometry of rotating cylinders case

Figure 8. λ2 isosurfaces in the wake of two rotating cylinders with TSR = 0.55 and Re = 200

IV. Conclusion

The validation benchmarks performed have shown good correlation with exact solutions where they are
available, and with existing experimental and computational data. This new overlapping moving mesh
method used with a Spectral Element Method solver opens doors to accurate flow simulations with moving
geometries. Applications are endless and range from rotary wing aerodynamics, to oscillating pumps and
pistons, to stirred reactors. The method will be used in the near future to study highly resolved wake
structures and blade-wake interactions for a rotating wind-turbine rotor. Future development will allow
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the motion to be prescribed according to the forces on the structure, rather than prescribed by the user.
Additional development must also be done to enable flow simulations around structures with both moving
and stationary parts.
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