
Journal of Computational Physics 390 (2019) 121–151
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Moving overlapping grid methodology of spectral accuracy for 

incompressible flow solutions around rigid bodies in motion

Brandon E. Merrill a, Yulia T. Peet b,∗
a Raytheon Missile Systems, Modeling, Simulation, & Analysis, Tucson, AZ 85756, USA
b School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 May 2018
Received in revised form 18 December 2018
Accepted 20 January 2019
Available online 7 March 2019

Keywords:
Moving grids
Domain decomposition
Spectral elements
Navier-Stokes equations

The simulation of fluid flow around moving rigid bodies has proven to be a difficult task 
for traditional computational fluid dynamics solvers. Decomposing the global domain into 
overlapping subdomains and allowing each subdomain to move independently, permits 
solutions to many flow problems with complex moving geometries to be determined 
in a straightforward manner. The present development of the moving overlapping grid 
method is built within a spectral element method incompressible flow solver, and uses 
an Arbitrary Lagrangian-Eulerian formulation of the governing equations to prescribe 
subdomain motions. The method maintains global spectral spatial accuracy across the 
subdomains with the polynomial refinement. The global high-order temporal accuracy 
of the method is also maintained through subdomain coupling enforced by an explicit 
interface temporal extrapolation scheme. The method produces aerodynamic forces and 
vortex shedding around two- and three-dimensional moving rigid bodies that is in line 
with published experimental and computational data. Additionally, the method achieves 
near linear computational scaling to thousands of cores.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Within the engineering and physical communities, there are many important problems that involve fluid flow around 
moving bodies, including propellers and blades on rotor- and watercraft, stirred reactors, maneuvering aircraft, and biolog-
ical flows such as blood flow through a pumping heart. Many of these problems include complex physics, often involving 
turbulence interactions which require high-accuracy computational methods for reliable flow field predictions. However, 
accurate modeling of the fluid flow around complex moving geometries has traditionally been a challenging and often 
impossible task.

Found among published literature are several methods used for computations of the flow around moving bodies. These 
methods can be categorized into two general classes: global-mesh methods and zonal-mesh methods (also referred to as 
embedded grid, Chimera, or domain decomposition methods). In global-mesh methods, a single grid is used to model the 
fluid flow around moving bodies, using either fixed-mesh or body-conforming mesh schemes.

Fixed-mesh methods, such as immersed boundary and fictitious domain, perform calculations on a global (non-
decomposed) Eulerian mesh that does not conform to the fluid-solid interface. (Note that while many of these methods are 
commonly applied to fluid-fluid interface problems, we will focus on their applications to fluid-solid interface problems.) 
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The immersed boundary method, which was originally introduced by Peskin in 1972 to model the blood flow through a 
pumping heart [1,2], allows for flow solutions to be computed around irregular shaped objects by tracking Lagrangian points 
at the interface boundary against the Eulerian (fixed) mesh where the fluid flow is calculated. The mesh within an immersed 
boundary solver does not need to conform to the fluid-solid interface, and the no-slip boundary conditions at fluid-solid 
interfaces are enforced by adding a body forcing term to the governing equations using either continuous or discrete forc-
ing [3,4]. In the similar fictitious domain method, first introduced by Glowinski et al. [5], the boundary conditions on the 
surface of rigid bodies are enforced by including distributed Lagrange multipliers in the governing equations. While several 
advances have been made to improve efficiency of both immersed boundary and fictitious domain methods [4], the accuracy 
of such methods is lacking, with few fixed-mesh methods even reaching second-order spatial accuracy [6–9]. In addition, 
resolution near interface boundaries is inconsistent as the object moves, requiring dynamic remeshing techniques such as 
adaptive mesh refinement (AMR) to maintain sufficient resolution, especially when attempting to capture characteristics of 
boundary layer flows over moving bodies [10].

In contrast, body-conforming methods ensure more consistent resolution near moving boundaries, though mesh gen-
eration is usually a more complex task. As solid interfaces move, the mesh must also move and deform thus inhibiting 
large displacements which would cause detrimental mesh distortions. Body-conforming methods include Deforming-Spatial-
Domain/Stabilized Space-Time (DSD/SST) and Arbitrary Lagrangian-Eulerian (ALE) methods. In the DSD/SST method, as orig-
inally presented by Tezduyar et al. [11], the governing equations for incompressible fluid flow, the Navier-Stokes equations, 
are defined using the space-time formulation, where the global time interval of the simulation is divided into subintervals 
called space-time slabs, and discretization is performed using interpolation functions in the four-dimensional space-time 
domain. The shape and orientation of the spatial domain is given by the shape of the individual space-time slabs, where 
solution on each slab is solved using a finite element formulation, thus treating moving boundaries throughout the global 
time interval [12]. The ALE method combines the Lagrangian and Eulerian formulations of the incompressible Navier-Stokes 
equations by changing the material derivative to account for additional convection introduced by the velocity of the moving 
grid points. Original developments into the combination of Eulerian and Lagrangian formulations began in the sixties [13,
14], though the standardized ALE method was developed a decade later by a group at Los Alamos National Lab [15,16]
where it was applied to finite difference methods. This ALE formulation was extended to finite element methods in the 
seventies and eighties [17–20], with later extension to the spectral element method by Ho and Patera [21,22]. In both of 
these techniques large rigid body movements cause large mesh distortions and possibly entanglement of the computational 
grid. To remedy this problem, many methods remesh the global domain when distortions become large, though remeshing 
is a computationally expensive process [4]. Another possible remedy is to allow the global mesh to move with the body 
in a rigid-body type of motion, but this creates challenges for the enforcement of boundary conditions at moving global 
boundaries.

Decomposing the global domain into a collection of subdomains, as in the class of zonal mesh methods, would allow for 
large rigid body movements of one domain within another, avoiding the need for remeshing and replacing global boundary 
conditions on moving domains with local interface conditions. Among this class, for example, are sliding mesh methods, 
which decompose the domain into non-overlapping subdomains, thus greatly restricting the types of grid motion that can 
be performed. While sliding mesh solvers can effectively perform simulations involving rotating geometries, they cannot be 
applied to important problems involving translational or deforming motion. Several variations of these solvers are commonly 
used for simulations of stirred reactors [23–27] and propellers/blades on rotorcraft [28–30]. Sliding mesh methods are 
typically coupled with finite volume methods, although other solvers are also used, such as finite element methods [31,27]. 
Global spatial accuracy for sliding mesh methods, which is most often limited by the accuracy of the interpolation of values 
among subdomains, reaches up to 2nd-order [29,30].

On the other hand, overlapping mesh methods allow for arbitrary rigid body motions, and do not have the same move-
ment restrictions as sliding mesh solvers since constraints on mesh alignment are alleviated. While overlapping mesh 
methods are commonly used for rotating machinery simulations as well [32–35], they have additionally been applied 
to simulate flows involving other types of body motions. These include flows around moving cylinders [36,37], moving 
spheres [38], piston-driven flows [36,39], biological flows such as flows through moving valves and hearts [40,41], aerody-
namic flows such as three element airfoils [42], plunging wings [37], and store separation from a wing [43,44,42,45], as well 
as flows around moving ships [46].

Moving overlapping mesh methods can be viewed as an extension of the stationary overlapping mesh methodologies 
which have been used for some time now to simplify mesh generation [47–49], model multiphysics problems [50,51], and 
improve parallelization of algorithms [52–54]. The very early idea of using overlapping grids to assist with a numerical 
solution of partial differential equations (PDEs) can be traced to a development of a domain decomposition technique, 
a methodology used to solve a boundary value problem (BVP) arising from a numerical discretization of a given PDE. 
A mathematical concept of overlapping domain decomposition technique was initially introduced for analytical solutions 
to differential equations, and was proposed by Schwarz in the late 1800’s [55]. The Schwarz Alternating Method, upon 
which many modern numerical domain decomposition techniques are based, decomposes a global domain into smaller 
overlapping subdomains, which communicate values at subdomain interface boundaries (local boundaries that are not also 
part of the global boundary, �i j = ∂�i \ ∂�). Variants exist including additive Schwarz method, multiplicative Schwarz 
method and others [56,53]. Although originally appeared as a technique for solving elliptic problems, the methodology has 
been extended to other classes of partial differential equations, including parabolic [57,58] and hyperbolic systems [59,60]. 
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Fig. 1. Schematic of the global domain and the subdomains. The dashed line denotes a hole cut in the subdomain �1(t), which is covered by �2(t).

When applied to time-dependent PDEs, a global discretization of the problem in space and time is first achieved, resulting 
in a discrete BVP, which is then solved with domain decomposition schemes. In this setting, the corresponding solution 
is essentially bound to be implicit, with many iterations of the value passing and solution calculations performed each 
timestep until convergence to a specified tolerance is achieved [60–62]. To relax the conditions of tight coupling associated 
with the domain decomposition techniques, a new class of overlapping grid methods have started to emerge, where the 
PDEs are locally discretized on the subdomains and are coupled together through the appropriate interface conditions, such 
as Composite Mesh methods [48] and Chimera Grid techniques [63–65]. This, in principle, provides a greater flexibility for 
formulating the numerical schemes, including a possibility of different subdomain discretizations, different time step values, 
and explicit interface updates.

While there are multiple numerical schemes that are designed to achieve high-order accuracy in single-grid computa-
tions, it is challenging to preserve high orders of accuracy on overlapping domains since inter-grid interpolation must also 
be of high-order. Among stationary overlapping grid methods, a few methods have been developed that feature fourth- to 
sixth- order accuracy in space, and third- to fourth- order accuracy in time [66–70]. High-order developments for moving 
overlapping grid methods are however scarce due to the added difficulties related to the mesh movement, typically restrict-
ing the currently available methodologies to be globally of second order, both spatially and temporally [36]. While some 
methods use higher-order (fourth or fifth) spatial integration schemes within individual subdomains [40,71], linear interface 
interpolation is usually employed, which restricts their global spatial accuracy to second.

Our recently developed stationary overlapping mesh methodology [72] built within a spectral element method incom-
pressible flow solver [73] maintains a global spectral accuracy in space and up to a third order accuracy in time, requiring 
only a few iterations. The present moving overlapping mesh methodology builds upon this development, allowing for a sub-
domain movement with the ALE formulation of the governing equations. Herein we discuss the development of this moving 
overlapping mesh methodology that achieves global (across the subdomains) spectral accuracy in space and up to a third 
order accuracy in time. Although the underlying ALE and multidomain coupling formulations are developed in a general 
framework, so that any arbitrary prescribed body motion can be handled (including deforming movements, such as, for 
example, in biolocomotion), this paper concentrates on prescribed solid motion as a rigid body, thus undermining the need 
for mesh deformation. We will, however, describe the methodology in a general sense, which would allow one to reproduce 
it, if needed, for any arbitrary motions. Mathematical and computational formulation of the methodology, verification of 
spatial and temporal global accuracy, and validation on canonical two- and three-dimensional problems involving flow over 
rigid moving bodies, will be given.

The remainder of the paper will be structured as follows. In Section 2 the methodology for solving fluid flow problems 
on moving overlapping subdomains with a spectral element method is put forth, including the mathematical derivation and 
numerical discretization of governing equations for fluid flow on subdomains using the ALE framework. In Section 3 we 
discuss the global communication framework for the parallelization of the method, and in Section 4 results are presented 
for two- and three-dimensional validation simulations, while in Section 5 conclusions are drawn.

2. Methodology

2.1. Mathematical formulation

2.1.1. Governing equations
In the current methodology, a two or three dimensional global solution domain is decomposed into two overlapping sub-

domains, �g(t) = �1(t) ∪ �2(t). The subdomains may be time dependent and are allowed to move with velocity w[i](x, t), 
an example of which is seen in Fig. 1. For the sake of generality, we formulate the methodology as if both domains are mov-
ing, assuming that a stationary domain has w[i](x, t) = 0. In this paper, we consider a rigid body motion for the subdomains, 
although the Cartesian velocity w(x, t) can still be a function of x, for example in the case of rotation. The fluid motion in 
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each subdomain is governed by the incompressible Navier-Stokes equations which are represented in non-dimensional form 
in a space Rd , as shown below

�1(t)

⎧⎨⎩
D u[1]

D t
= −∇ p[1] + 1

Re
∇ 2u[1]

∇ · u[1] = 0
(1)

and

�2(t)

⎧⎪⎨⎪⎩
D u[2]

D t
= −∇ p[2] + 1

Re
∇ 2u[2]

∇ · u[2] = 0

(2)

where u is the velocity vector, p is the pressure, D/Dt is the material derivative, and the Reynolds number, Re = U L/ν , is 
based on a characteristic velocity, length scale and kinematic viscosity. The bracketed superscript signifies the corresponding 
subdomain.

The global domain boundary is defined ∂�g (t) = ∂(�1(t) ∪�2(t)). The global boundary ∂�g(t) typically contains Dirich-
let, ∂�

g
D(t), and the Neumann, ∂�

g
N (t), parts, as in example of Fig. 1. Local subdomain boundaries that are not also part 

of the global boundary are termed interface boundaries, �i j(t) ≡ {∂�i(t) \ ∂�g(t)} ⊂ � j(t). Conditions at moving solid wall 
boundaries are defined within a local subdomain, ∂�i

W (t). The generalized initial and boundary conditions for each subdo-
main are then given as

u[1],[2](x,0) = u0(x), x ∈ �1,2(0) (3a)

u[1],[2](x, t) = ud(x, t), x ∈ ∂�
g
D(t) (3b)

∇u[1],[2](x, t) · n̂ = 0, x ∈ ∂�
g
N(t) (3c)

u[1],[2](x, t) = w[1],[2](x, t), x ∈ ∂�
1,2
W (t) (3d)

u[1](x, t) = u[2](x, t) x ∈ �12(t)‖�21(t) (3e)

with n̂ the unit outward pointing surface normal.

2.1.2. Arbitrary Lagrangian-Eulerian formulation
To represent the flow solution on moving subdomains, we adopt an Arbitrary Lagrangian-Eulerian (ALE) formulation [20,

74,75], which decouples the mesh motion from the fluid motion and formulates the equations of fluid motion in a coordinate 
system moving with the computational mesh. Even though our subdomains are moving as rigid bodies, and the mesh 
deformation is not an issue in the current work, a strictly Eulerian approach would involve re-interpolation of an entire 
flow solution onto a new location of grid points in physical space at each time step, which can be avoided with the ALE 
formulation. In what follows, we present a brief description of the methodology [20,74,75].

The position of a material point, or particle, within a continuous media is expressed in terms of material coordinates, 
X = (X1, X2, X3), that are related to the initial position of a fluid particle within the media. On the other hand, within 
the laboratory frame spatial coordinates are fixed in time x = (x1, x2, x3), and the relationship between material and spatial 
coordinates can be expressed in terms of a mapping that returns the spatial coordinates of a particle at a specified time 
when given its material coordinates. The inverse of this mapping returns the material coordinates of a particle, given its 
spatial coordinates. The ALE formulation introduces a third coordinate system, also dependent on space and time, which we 
will call the reference coordinate system, χχχ . This coordinate system is defined for a reference domain which is representative 
of the computational mesh and, generally, is allowed to move in an arbitrary manner. A mapping can be defined that returns 
the reference coordinates of a particle when given its spatial coordinates

χi = G (xi, t) , (4)

with inverse mappings also defined.
Derivatives with respect to time of a physical quantity f (xi, t) related to the flow can be expressed in terms of any of 

the coordinate systems defined above. Thus, the following definitions,

∂ f

∂t

∣∣∣∣
X

,
∂ f

∂t

∣∣∣∣
x
,

∂ f

∂t

∣∣∣∣
χχχ

, (5)

represent, respectively, the derivative with respect to time in the material frame (material, or Lagrangian, derivative, often 
denoted with a symbol D/Dt), the derivative with respect to time in the laboratory frame (Eulerian derivative), and the 
derivative with respect to time in a reference frame (ALE derivative, often denoted with a symbol δ/δt).
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To allow for large fluid distortions, fluid flow is typically expressed using the Eulerian formulation, using coordinates x. 
Thus, convective terms arise in equations (1) and (2) to account for the motion of the particles relative to the laboratory 
frame [75]:

D f

Dt
= ∂ f

∂t

∣∣∣∣
x
+ u · ∇ f , (6)

where u = ( ∂x/∂t)|X is the particles material velocity, or fluid velocity.
In a similar manner the mesh velocity, w = ( ∂x/∂t)|χχχ , is defined using the reference domain χχχ , and an ALE derivative 

is formulated to account for convective terms that arise due to the relative motion between the reference and laboratory 
coordinate systems

δ f

δt
= ∂ f

∂t

∣∣∣∣
x
+ w · ∇ f . (7)

The material derivative can now be formulated for use with the reference domain by expressing (6) in terms of (7) [74]

D f

Dt
= δ f

δt
+ (u − w) · ∇ f . (8)

We see that if w = 0, the traditional formulation of the material derivative is recovered as used in the Eulerian description, 
and if w = u the convective terms vanish leaving only a partial derivative holding χχχ constant as used in the Lagrangian 
description.

With the above formulation, Navier-Stokes equations (1) and (2) become

�1(t)

⎧⎨⎩
δu[1]

δt
+ (u[1] − w[1]) · ∇u[1] = −∇ p[1] + 1

Re
∇ 2u[1]

∇ · u[1] = 0
(9)

and

�2(t)

⎧⎪⎨⎪⎩
δu[2]

δt
+ (u[2] − w[2]) · ∇u[2] = −∇ p[2] + 1

Re
∇ 2u[2]

∇ · u[2] = 0

(10)

where initial and boundary conditions as given in (3) remain unchanged. We see that the governing equations are now 
formulated with respect to the moving mesh coordinate system, which allows for convenient numerical integration of 
equations of motion in the moving domains.

2.1.3. Mesh velocity
In the current methodology, the body motion is prescribed with an a-priori specified function w(x, t). This allows us to 

specify boundary conditions for the fluid velocities at the moving wall boundaries in a manner given by equation (3d), and 
these values are also equal to the mesh velocity at the moving wall boundaries. In a general formulation, an elastic solver 
can be employed to find a smooth mesh velocity function inside a moving subdomain [74]. The present paper in particular 
deals with translational and rotational rigid body motions, which allows us to avoid an elastic solution and simply prescribe 
mesh velocities throughout the whole domain by extending the function w(x, t) onto the corresponding grid points.

2.2. Numerical formulation

Equations (9) and (10) in moving overlapping subdomains are coupled through the interface conditions given in (3e). 
In the numerical solution of these equations, we determine the values at interfaces u[i]

inter f (x, t) through an explicit ap-

proach utilizing an interpolated solution from the adjacent subdomain at several previous time instances, u[i]
inter f (x, t) =∑

k wk u[ j]
interp(x, t − τk), where τk correspond to the time shifts with respect to the previous time instances and wk are 

the weights in the linear combination determined by an interpolation scheme used, to be described in Section 2.2.8. This 
value is used as a Dirichlet boundary condition, u[i](x, t) = u[i]

inter f (x, t), for the subdomain �i on the boundary �i j at time t . 
Thus, solutions of (9) and (10) can be computed independently after interface values are exchanged. Hence, the numerical 
formulation within each subdomain is identical. In the following sections, we omit the subdomain superscripts (�i → �, 
u[i] → u, w[i] → w, p[i] → p), except where additional clarity is needed.
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2.2.1. Global variational form
The ALE formulation of the governing equations, (9) and (10), is cast into variational form by multiplying each equation 

with a test function v(x, t) ∈ H1
0(�(t)), and then integrating over the subdomain. Note that both the test function, v(x, t)

and the subdomain �(t) are dependent on time due to the moving reference frame. The variational form of the problem 
becomes: Find u(x, t) ∈ H1

b(�(t)), p(x, t) ∈L2(�(t)) such that(
δu

δt
,v
)

+ ((u − w) · ∇u,v)

+(∇p,v) − 1

Re

(
∇2u,v

)
= 0 ∀v(x, t) ∈ H1

0(�(t)),

−(q,∇ · u) = 0 ∀q(x, t) ∈ L2(�(t)),

(11)

where the inner product of two scalar functions a and b is defined

(a,b) =
∫

�(t)

a(x, t)b(x, t)dV, ∀ a,b ∈ L2(�(t)), (12)

and where L2(�(t)) represents the space of square-integrable functions, and H1(�(t)) represents the space of square-
integrable functions whose first derivatives are square-integrable as well. H1

0(�(t)) is the subspace of H1(�(t)) with 
v(x, t) = 0 on Dirichlet, ∂�D(t), moving wall, ∂�W (t), and interface, �i j(t), boundaries, while H1

b(�(t)) is the subspace 
of H1(�(t)) with u(x, t) = ud(x, t) on ∂�D(t), u(x, t) = w(x, t) on ∂�W (t), or u[i](x, t) = u[i]

inter f (x, t) on �i j(t).
The variational equation (11) can be transformed as follows. Let us first remark that, although test functions, v(x, t) are 

time dependent, they are defined in the ALE formulation to satisfy the property δv/δt = 0 [74]. Using this property, the 
integration by parts, and the Reynolds transport theorem [76,74], the inner product of the unsteady term becomes(

δu

δt
,v
)

= δ

δt

∫
�(t)

u · v dV −
∫

�(t)

(∇ · w)u · v dV. (13)

This formulation helps to avoid inconsistencies during the temporal discretization on non-stationary domains. Combining 
(13) with the convective terms, utilizing the incompressibility constraint, ∇ · u = 0, and employing an additional transfor-
mation of a viscous term via an integration by parts [74,72], the variational form of the Navier-Stokes equations in the ALE 
formulation becomes

δ

δt
(u,v) + (∇ · [uu − uw] ,v)

−(p,∇ · v) + 1

Re
(∇u,∇v) = 0 ∀v(x, t) ∈ H1

0(�(t))

−(q,∇ · u) = 0 ∀q(x, t) ∈ L2(�(t)).

(14)

2.2.2. Spatial discretization
In the present implementation of the spectral element method, a moving subdomain, �(t), is decomposed into a union 

of conforming elements

�(t) =
E∑

k=1

�k(t), (15)

where aggregate inner products in a subdomain are defined through a summation across elements

(a,b)|�(t) =
E∑

k=1

(ak,bk)|�k(t) . (16)

The governing equations (14) are spatially discretized within each element by defining finite dimensional subspaces, X N ⊂
H1(�(t)) and Y N ⊂L2(�(t)), onto which the search spaces, H1(�(t)) and L2(�(t)), are projected,

X N = H1(�(t)) ∩ P
d
N

Y N = L2(�(t)) ∩ P
d
N−2,

(17)

with Pd the space comprised of a d-dimensional tensor-product of all Nth or lower-order polynomials.
N



B.E. Merrill, Y.T. Peet / Journal of Computational Physics 390 (2019) 121–151 127
A function, independent of time, exists for each element �k that maps it from the ALE frame with reference coordinates 
χχχ ∈ �k , to a d-dimensional primary element, �̂ = [−1, +1]d , with primary coordinates r ∈ �̂: r = M̃k(χχχ) with the inverse 
χχχ = M̃−1

k (r). To relate the primary coordinates to the physical coordinates in laboratory frame, however, the mapping 
function must be time-dependent, such as

r = Mk(x, t) ≡ M̃k
(
G(x, t)

)
, (18)

with the inverse

x = M−1
k (r, t) ≡ G−1(M̃−1

k (r), t
)
, (19)

with the function G(x, t) defined as in (4).
Collocation points within the primary element are defined with Gauss-Lobatto Legendre (GL) quadrature in the velocity 

space, ξ j ∈ [−1, +1], and Gauss Legendre (G) quadrature in the pressure space, η j ∈] − 1, +1[. Thus problem (14) is posed 
with finite-dimensional subspaces: Find u(r, t) ∈ X N

b , p(r, t) ∈ Y N such that

δ

δt
(u,v)GL + (∇ · [uu − uw] ,v)GL

+ 1

Re
(∇u,∇v)GL − (p,∇ · v)G = 0 ∀v(r, t) ∈ X N

0 (20)

−(q,∇ · u)G = 0 ∀q(r, t) ∈ Y N (21)

where the aggregate inner products (16) on G and GL nodes are denoted.
Lagrange interpolating polynomials, φi(r), are employed as basis functions to span the discretized velocity space PN , and 

pressure space PN−2, with the Lagrange polynomials satisfying the following property

φ i(ξ j) = δi j, (22)

where δi j is the Kronecker delta, giving the following finite-dimensional approximation for a scalar field fk(x, t) in �k(t) in 
one dimension

fk

(
M−1

k (r, t)
) ∣∣

�k(t) ≈
N∑

i=0

fk,i(t)φi (r) , r ∈ [−1,+1] , (23)

with extension to multiple dimensions performed through the tensor product operations [74].

2.2.3. Discrete matrix operators
In this section, we present the matrix operators for the inner products in (20) and (21). We will start with the non-

linear convective term, which has a different form in the present ALE methodology as compared to a stationary grid 
formulation [72]. For this term, noting that (∇ · [uu − uw] ,v) = ([(u · ∇) u − (w · ∇) u − (∇ · w) u] ,v), we write, first, for 
a one-dimensional variable (unbolded) on a reference interval r = [−1, +1](

u(r, t)u′(r, t), v(r, t)

)
k,GL

=
∫
�̂

uk(r, t)u′
k(r, t)vk(r, t)dr

≈
∫
�̂

(
N∑

i=0

uk,i(t)φi(r)

)⎛⎝ N∑
j=0

uk, j(t)φ
′
j(r)

⎞⎠( N∑
m=0

vk,m(t)φm(r)

)
dr

≈
N∑

m=0

vk,m(t)
N∑

j=0

uk, j(t)
N∑

i=0

uk,i(t)

∫
�̂

φi(r)φ
′
j(r)φm(r)dr (24)

and similarly for the other two terms. The prime superscript here denotes the derivative in r. Combining all the three terms 
gives ([

uu′ − wu′ − w ′u
]
, v
)

k,GL ≈ v T
k (t)Ĉk(t)uk(t), (25)

with the time dependent convective operator, Ĉk(t), computed using GL quadrature weights as

Ĉk
i j(t) = (uk,i(t) − wk,i(t)

)
ωi D̂ i j −

N∑
m=0

wk,m(t)ωi D̂ imδi j, (26)
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where D̂i j is the spectral differentiation matrix

D̂i j ≡ φ′
j(r)
∣∣∣
r=ξi

. (27)

The property (22) of the Lagrange interpolating polynomials was utilized in deriving Eq. (26). Here, a hat over an unbolded 
variable denotes a one dimensional matrix operator for the reference interval, and an underline denotes a vector of coeffi-
cients which are defined at the discrete collocation points, v = (v0, v1, . . . , v N). Note that the convective operator Ĉk(t) is 
nonlinear, time dependent, and local to each element k due to its dependence on velocity.

The discretization of the other terms in (20) and (21) is briefly summarized as follows (please see Refs. [72,74,77] for 
more details). The first and the third terms on the left side of equation (20) are discretized as(

u(r, t), v(r, t)
)

k,GL ≈ v T
k (t)B̂uk(t), (28)(

u′(r, t), v ′(r, t)
)

k,GL ≈ vT
k (t) Âuk(t), (29)

giving rise to the mass and stiffness matrices, respectively

B̂i j =
∫
�̂

φi(r)φ j(r)dr ≈
N∑

l=0

ωlφi(ξl)φ j(ξl), (30)

Âi j =
∫
�̂

φ′
i (r)φ′

j (r)dr =
N∑

l=0

ωlφ
′
i (ξl)φ′

j (ξl) . (31)

Note that due to the property (22) for the Lagrangian basis functions, the mass matrix simplifies to a diagonal matrix with 
GL quadrature weights in the main diagonal, B̂ = diag(ωl).

The terms involving pressure in equation (20) and the left-hand side of the continuity equation (21) use G quadrature in 
the weak form(

p(r, t), v ′(r, t)
)

k,G ≈ v T
k (t) ˆ̃DT

p
k
(t), (32)(

q(r, t), u′(r, t)
)

k,G ≈ qT
k
(t) ˆ̃Duk(t), (33)

with a derivative matrix, ˆ̃D , composed of a weighted spectral differentiation matrix interpolated onto the G nodes, and a 
weighted interpolation operator from GL to G nodes to form a consistent quadrature [74,72]. Note that, unlike the convective 
operator, all other (linear) operators in SEM are not element-dependent and not time-dependent.

The discrete inner products presented above can be extended to multiple dimensions with the use of the tensor product 
operations as, for example,(

u(r, t), v(r, t)
)

k,GL = v T
k (t)B̂ uk(t), (34)

on a reference element r = [−1, +1]d , where the operator with the underline refers to its multi-dimensional counterpart 
defined through the tensor products, e.g. B̂ = B̂ ⊗ B̂ ⊗ B̂ . Here, uk(t) and vk(t) denote coefficients of scalar variables in higher 
dimensions, u(x, t), v(x, t), stored in a vector form in a lexicographical order [74,72]. Additional modifications are made 
for geometries not conforming with the primary element definition, [−1, +1]d , where the Jacobians, Jk , of the mapping 
functions (18), (19) are used to formulate the discrete inner products on deformed elements, such as

(u (x, t) , v (x, t))k,GL = v T
k (t)Bk(t)uk(t), (35)

where Bk(t) is now defined, for example, in two dimensions,

Bk,iı̂ jĵ (t) =
∫
�̂

φiφı̂φ jφĵ Jk(r1, r2, t) dr

≈
N∑

l=0

N∑
m=0

ωlωmφi(ξl)φı̂(ξl)φ j(ξm)φĵ (ξm) Jk(ξl, ξm, t). (36)

The hat is dropped for the full geometry operators that are no longer conforming to the primary element definition. Since 
Jacobian is time-dependent for moving grids, all discrete matrix operators are both element- and time-dependent.

The operators expressed so far were defined for local (albeit deformed) elements. Coupling across elements is accom-
plished through the use of connectivity operators. An aggregation of elemental inner products is performed to generate 
unassembled subdomain-wide operators (with the subscript “L” denoting unassembled arrays)
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(u(x, t), v(x, t))GL =
E∑

k=1

v T
k (t)Bk(t)uk(t) = v T

L (t)BL(t)uL(t). (37)

To enforce the velocity continuity across element boundaries, which is otherwise not enforced in unassembled arrays, 
the gather (Q T ) and scatter (Q ) connectivity operators are introduced to map the unassembled arrays onto assembled ones 
and vice versa

u(t) = Q T uL(t), uL(t) = Q u(t), (38)

with sudomain-wide assembled arrays not carrying the subscript L. Values at element boundaries in assembled arrays are 
shared between adjacent elements, enforcing continuity [74]. Global inner products can be expressed via assembled arrays 
utilizing unassembled matrix operators as

(u(x, t), v(x, t))GL = v T
L (t)BL(t)uL(t) = v T (t)Q T BL(t)Q u(t). (39)

Although in a current moving domain formulation, an element moves and/or deforms, its relative position with respect 
to the other elements in the subdomain remains the same, thus the connectivity operators are independent of time. That 
would not be the case if the elements were to be added or removed from the subdomains during the run time, which is 
not implemented in the current procedure.

The multidimensional vector representation of the problem is given by the summation of individual scalar arrays

(
u(x, t),v(x, t)

)= d∑
i=1

(
ui(x, t), vi(x, t)

)
(40)

yielding(
u(x, t),v(x, t)

)
GL = vT (t)QT BL(t)Qu(t) (41)

where bolded variables represent vector-valued coefficient arrays and operators that act on such arrays [74,72].

2.2.4. Spatially discretized equations
Upon spatial discretization, the weak form of the Navier-Stokes equations (1) and (2) given by Eq. (14) becomes

δ

δt

(
B(t)u(t)

)= −C(t)u(t) − 1

Re
A(t)u(t) + D̃

T
(t) p(t) (42)

−D̃(t)u(t) = 0 (43)

where the time-dependent subdomain-wide matrix operators are given by

A(t) = QT AL(t)Q,

B(t) = QT BL(t)Q,

C(t) = QT CL(t)Q,

D̃(t) = D̃L(t)Q. (44)

2.2.5. Temporal discretization
In the current implementation of the methodology, the spatially discretized governing equations are temporally dis-

cretized using kth-order backward differentiation (BDFk) for the time derivative, which is based on truncated Taylor 
series [74]. The method gives, assuming constant time stepping,

δ

δt

[
B(t)u(t)

]n
B D F = 1

�t

k∑
p=0

βpkBn−pun−p, (45)

where δ
δt

[
B(t) u(t)

]
B D F denotes the BDF derivative operator, superscript n denotes the current timestep and the coefficients 

βpk are given in Table 1. To avoid an implicit treatment of a non-linear convective term, it is approximated by kth-order 
explicit extrapolation operator (EXTk) as

E
[
C(t)u(t)

]n
E X T =

k∑
q=1

γqkCn−q un−q, (46)

with the coefficients γqk also given in Table 1.
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Table 1
Coefficients for the BDFk and EXTk schemes, k=1,2,3 [78].

βp1 βp2 βp3 γp1 γp2 γp3

p=0 1 3/2 11/6
p=1 −1 −2 −3 1 2 3
p=2 1/2 3/2 −1 −3
p=3 −1/3 1

The BDFk scheme with an EXTk treatment of the convective term and an implicit treatment of the viscous and pressure 
terms applied to the spatially discretized momentum equation (42) thus takes the form

1

�t

k∑
p=0

βpkBn−pun−p = −
k∑

q=1

γqkCn−q un−q − 1

Re
Anun + D̃

T ,n
pn. (47)

Note that the BDFk discretization is applied to the ALE derivative in the current formulation, i.e. the derivative defined 
with respect to the moving reference frame. To show that this discretization maintains kth order temporal accuracy, we first 
note that the values Bn−pun−p are defined at spatial locations with respect to the mesh configuration at a timestep tn−p , 
i.e. at locations x − �xp , where x are the physical coordinates associated with the current mesh position, and �xp is the 
mesh displacement during p previous time steps,

Bn−pun−p = B(x − �xp, t − p�t), (48)

where B(x, t) would correspond to Bnun . The mesh position increment �xp can be approximated using the current mesh 
velocity w(x, t) as

�xp = w(p �t) − 1

2!wt(p �t)2 + 1

3!wtt(p �t)3 + . . . (49)

Performing a multivariable Taylor series expansion of the approximation (48) around B(x, t) and substituting into the ALE 
derivative (45), one can easily get

δ

δt

[
B(t)u(t)

]
B D F = ∂B

∂t
+ w

∂B
∂x

+O[�tk], (50)

which is, indeed, a kth order temporal approximation to the ALE derivative defined in (7).
Using the same arguments as before, i.e. defining

Cn−p un−p = C(x − �xp, t − p �t),

substituting expression (49) for �xp , and expanding each term C(x − �xp, t − p �t) in Taylor series around C(x, t) with 
� t as a small parameter, one can illustrate that the EXTk scheme maintains the desired temporal order of accuracy on the 
moving meshes,

E
[
C(t)u(t)

]
E X T = C(x, t) +O[�tk]. (51)

2.2.6. Stability
Stability regions of a pure implicit BDFk scheme and an explicit BDFk/EXTk scheme inferred from a model equation 

du/dt = λu for stationary domains are shown in Fig. 2(a), (b), respectively. It can be seen that BDFk scheme is always stable 
for systems with real negative eigenvalues, such as viscous problems, and BDFk/EXTk is stable for convective problems 
(which have imaginary eigenvalues), provided the corresponding CFL condition is met [74,79]. For the mixed explicit-implicit 
methods, when the two schemes are combined (typically extending an implicit, BDFk, treatment to a viscous term, and an 
explicit, BDFk/EXTk, treatment to a convective term, such as in Eq. (47)), the stability properties are determined by a relative 
strength of the convective and viscous contributions, but, generally, an addition of an implicit viscous term enlarges the 
stability region of a BDFk/EXTk scheme [80], see Fig. 2(c).

Hereafter, we will be referring to a scheme used to discretize Eq. (47) as BDFk, with the understanding that the convec-
tive term is treated explicitly with EXTk, and viscous and pressure terms are treated implicitly.

In general, analyzing stability of the time integration on the moving domains, i.e. in the ALE formulation, is not a trivial 
task [81,82]. However, in the current case of a rigid body motion of a subdomain, the situation simplifies quite a bit, 
since the mesh velocity w(x, t) in this case obeys the relation ∇w = 0. It can be seen that the problematic terms of an 
undetermined sign that hinder the stability proofs for the high-order time accurate schemes in the ALE formulation are 
proportional to ∇w (see [82]). Stability characteristics of time stepping schemes thus should not change when applied to 
the moving domains that move as rigid bodies, however the corresponding CFL condition must refer to the relative fluid 
velocity with respect to the moving mesh.
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Fig. 2. Stability characteristics of the BDFk, BDFk/EXTk and mixed methods.

2.2.7. Stokes problem
After some rearrangement, the temporally and spatially discretized Navier-Stokes equations (42) and (43) become

Hnun − D̃
T ,n

pn = fn (52)

D̃
n

un = 0 (53)

where the Helmholtz operator

Hn =
(

β0

�t
Bn + 1

Re
An
)

, (54)

and the right hand side
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fn = −
k∑

p=1

βpkBn−pun−p −
k∑

q=1

γqkCn−qun−q. (55)

We see that explicit handling of the nonlinear convective terms permits the discretized governing equations to be expressed 
as a Stokes problem. Note that the Stokes problem given by Eqs. (52)–(53) that resulted from a temporal discretization of an 
index 2 differential-algebraic equation system given by Eqs. (42)–(43) due to incompressibility constraint, is fully coupled 
and is difficult to solve directly. In the current methodology, it is solved using a pressure-velocity splitting method in the 
pressure correction formulation [74] by first rewriting the original Stokes system (52)–(53) in a modified form(

H −H W D̃
T

−D̃ 0

)(
un

pn − pn−1

)
=
(

fn + D̃
T

pn−1

0

)
+
(

rn

0

)
, (56)

where W is the matrix operator to be determined, and pn−1 is the pressure from the previous time step. The term rn in 
the right-hand side is the residual that accounts for the difference between Eq. (56) and its exact representation (52)–(53)
whose value depends on the choice of W. The residual is discarded in the pressure-velocity split solution and represents 
the splitting error. For example, the choice W = H−1 would result in a zero splitting error and would lead to a fully 
implicit Uzawa algorithm, which implementation is however rather difficult and costly [74]. The choice W = � t

β0
B−1 which 

is employed in classical fractional-step methods, would lead to a high splitting error (order one with � t for projection 
methods and order two for pressure correction methods [74,83]). Higher-order approximation for W can be constructed by 
retaining more terms in a Taylor series expansion of H−1. The following form, for example,

W = �t

β0
B−1 −

(
�t

β0

)2

B−1A B−1 +
(

�t

β0

)3

(AB−1)2 B−1, (57)

leads to a decoupling error that is of order three for projection methods and of order four for pressure correction meth-
ods [74],

rn =
(

�t

β0

)3

(AB−1)2D̃
T
(

pn − pn−1
)

= O (� t4), (58)

and is employed in the current methodology. With this choice of W and omitting the residual term, the factorized form of 
Eq. (56) leads to a decoupled system in pressure and velocity(

H −H W D̃
T

0 D̃ W D̃
T

)(
un

pn − pn−1

)
=
(

fn + D̃
T

pn−1

−D̃ H−1(fn + D̃
T

pn−1)

)
, (59)

which, due to its low splitting error, allows for up to the fourth order temporal integration of the N.-S. equations, restricted 
by the order of the time integrator in (42).

2.2.8. Boundary conditions
Homogeneous Neumann boundary conditions are naturally satisfied with weak formulation [74]. Boundary conditions 

at moving wall, Dirichlet and interface boundaries are satisfied by adding an additional constraint to the problem. We 
first describe how homogeneous boundary conditions are prescribed and proceed to setting up inhomogeneous boundary 
conditions.

Homogeneous conditions An unassembled Mask matrix, M L , is used in the discretized representation of the problem for the 
satisfying of homogeneous Dirichlet boundary conditions [74,72]. In the current moving mesh implementation, boundary 
condition types are assigned only upon initialization of the simulation, so the Mask matrix is independent of time. The 
Mask matrix enforces homogeneous boundary conditions on, for example, the term involving the Mass operator as follows(

u(x, t),v(x, t)
) → vT ,nQT MLBn

LMLQun. (60)

Inhomogeneous conditions To impose inhomogeneous Dirichlet, moving wall and interface boundary conditions, the solu-
tion, un is separated into a homogeneous part, un

0, that satisfies the homogeneous conditions on Dirichlet, moving wall 
and interface boundaries, and an inhomogeneous part, un

b , that satisfies the corresponding inhomogeneous conditions. The 
homogeneous part is a solution of the discretized equations (52) and (53), and it remains on the left-hand side of the prob-
lem. The inhomogeneous part is given by any function that is continuous through the domain and satisfies the conditions 
on ∂ �

g,n
D , ∂ �n

W and �i j,n , and it thus alters the right-hand side of equations (52) and (53). Such a function, un
b , can be 

constructed using any inexpensive projection method [74]. The discrete values of boundary arrays un
d

and wn at the Dirich-
let and moving wall boundaries are obtained in a straightforward manner by discretizing the corresponding equations (3b)
and (3d). Double lines denote the discrete boundary condition arrays defined at the boundaries. We will devote the rest of 
this section to describing of how the interface boundary arrays un are obtained at each time step.
inter f
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Fig. 3. Illustrative representation of points on interface boundaries being mapped to reference coordinates at time tn and tn+1. �i
k′ represents a stationary 

domain, � j
k–moving domain.

Setting up the interface conditions The procedure of specifying the interface conditions consists of two steps: a search step 
served to locate the interface points within the neighboring subdomain, and an interpolation step, to obtain the current 
interface velocity values un

inter f
at these points. In what follows, we describe these two steps.

a) Search step In the present methodology, a search procedure is performed once at the beginning of each timestep and 
is described in detail in Ref. [72]. The difference with a stationary overlapping method is that, since each subdomain now 
moves relative to the other, the locations of interface points within the other subdomain now change at each timestep. Upon 
the occasion that an interface node moves outside of the other subdomain, user imposed Dirichlet boundary conditions 
could be enforced at that point, but we did not encounter such situations in the problems treated in the current paper.

In a search procedure, first, the element in � j,n that encompasses the physical coordinates of the interface point x[i],n ∈
�i j,n (� j,n

k ) is determined. When it is determined, the coordinates of the interface point in the laboratory frame, x[i],n are 
mapped to primary coordinates, r[ j],n ∈ [−1, +1]d , of the element � j,n

k . Fig. 3 shows this mapping from physical to primary 
coordinates during the mesh movement. We see that the search procedure must necessarily be performed at each timestep 
for both moving and stationary domains. The search is then treated as an optimization procedure to determine an interface 
point’s primary coordinates, r[ j],n , within the element � j,n

k ,

min
r∈[−1,+1]d

h(r), (61)

where h(r) =
∣∣∣x[i],n −M−1,[ j]

k (r, tn)

∣∣∣2, M−1
k (r, tn) is the function (19) that maps primary coordinates, r, to physical coordi-

nates, x[ j],n , at time tn in the physical element � j,n
k . Superscripts “[ j]” and “n” for the primary coordinates r were omitted 

here for readability. Newton’s method is used for optimization as

rp+1 = rp − [Hh(rp)
]−1∇h(rp), (62)

where p is the iteration index, ∇h(r) is the gradient vector and Hh(r) is the Hessian matrix of the optimization function.

b) Interpolation step Interpolation step consists of a spatial interpolation and a temporal interpolation to set up the corre-
sponding spatially and temporally accurate boundary conditions for the interface values at time step tn .

Spatial interpolation Spatial interpolation is performed in a similar manner as in a corresponding stationary overlapping 
grid method [72] and consists of a Lagrange interpolation of a computed solution from the adjacent subdomain

u[ j],n
interp

∣∣
x[i],n =

N∑
l=0

N∑
m=0

u[ j],n
k,lm φl

(
r[ j],n

1

)
φm

(
r[ j],n

2

)
, x[i],n ∈ �i j,n → r[ j],n ∈ �

j,n
k , (63)

(triple summation in 3 dimensions). Here, the subscript “interp” stands for an interpolated value inside the � j,n subdomain. 
The Lagrange interpolation (63) is consistent with the accuracy of the polynomial approximation within the SEM spatial 
scheme, and returns a spectrally accurate value for u[ j],n ∣∣ [i],n with polynomial refinement.
interp x
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Temporal extrapolation To ensure specified temporal accuracy of the global time stepping scheme for the moving overlap-
ping mesh methodology, an interface coupling scheme based on mth order temporal extrapolation (IEXTm) is designed, that 
maintains its accuracy without the need for iterations,

u[i],n
inter f

∣∣
x[i],n =

m∑
p=1

γpmu[ j],n−p
interp

∣∣
x[i],n−p , x[i],n−p ∈ �i j,n−p, (64)

where subscript interf refers to interface boundary conditions used by the interface points x[i],n ∈ �i j,n , γpm are the same 
extrapolation coefficients as defined in Table 1, and u[ j],n−p

interp is a spatially interpolated value from Eq. (63) at time step tn−p . 
Interface conditions defined with equation (64) for all the points x[i],n ∈ �i j,n are then collected to form the boundary arrays 
u[i],n

inter f
which are used to set up inhomogeneous interface conditions on �i j,n at time step tn in a weak form.

To show that the IEXTm scheme maintains the desired temporal order of accuracy with respect to the laboratory frame 
in the ALE formulation, the same procedure that led to Eq. (51) can be used by rewriting

u[ j],n−p
interp

∣∣
x[i],n−p = U(x[i] − �x[i]

p , t − p�t), (65)

and performing the corresponding multivariable Taylor series expansions such that

u[i]
inter f (x[i], t) = U(x[i], t) +O[�tm]. (66)

Note that, since the expressions (65), (66) are concerned with the interface points x[i] ∈ �i j that reside in the subdomain 
�i , both their coordinates, x[i] , and their increment, �x[i]

p , in the laboratory frame are determined with the mesh velocity 
w[i](x, t) of the subdomain �i .

Iterations Explicit temporal extrapolation of the interface terms in the overlapping grid scheme reduces the stability re-
gion of the underlying time integrator. The effects of explicit extrapolation on stability for the BDFk/IEXTm schemes were 
previously analyzed in [78] for stationary overlapping grids using a model problem of one-dimensional heat equation. It 
was found that, while first-order temporal schemes were unconditionally stable, larger mesh overlap sizes and an increased 
number of Schwarz-like subdomain iterations improved the stability properties of high-order schemes for the model prob-
lem. It was also found that, in general, more iterations were required to stabilize the third-order schemes as compared to 
the second-order schemes [78]. To enhance stability properties of the current method, Schwarz-like iterations are performed 
in addition to the IEXTm scheme, similar to our previous stationary overlapping grid solver [72]. Interface conditions (3e)
for the lth iteration are defined

u[i],l=1,n
inter f

∣∣
x[i],n =

m∑
p=1

γpmu[ j],lmax,n−p
interp

∣∣
x[i],n−p

u[i],l>1,n
inter f

∣∣
x[i],n = u[ j],l−1,n

interp

∣∣
x[i],n

⎫⎪⎪⎬⎪⎪⎭ x[i],n ∈ �i j,n (67)

where the first iteration uses extrapolated values (64) from m previous timesteps at interface nodes, and succeeding itera-
tions use the latest iteration solution in the other subdomain for interpolated values. While velocity and pressure values are 
dependent on the iteration count, the linear operators are not since geometry and position do not change with iterations. 
Since the nonlinear convection operator is treated explicitly, only values from previous timesteps are used in its calculation, 
and thus iterations do not affect its values at the current timestep.

While a theoretical stability analysis of the overlapping grid interpolation on the moving domains will be addressed in 
our future work, the test cases show a very similar behavior of the overlapping moving and overlapping stationary domain 
methods in terms of their stability properties [72,78]. Thus, in the present moving overlapping mesh formulation, no more 
than two iterations were needed to attain stable solutions with the second-order scheme (BDF2/IEXT2), and four to seven 
iterations for the third-order scheme (BDF3/IEXT3) for the presented cases.

2.2.9. Fully-discretized equations
Decomposing u into homogeneous and inhomogeneous solutions gives the full discretized equations for two moving 

overlapping subdomains in block matrix form with iteration and timestep indices as

In �1 :
⎛⎝ H[1],n −D̃

T ,[1],n

−D̃
[1],n

0

⎞⎠( u[1],l,n
0

p[1],l,n
L

)
=
(

F[1],l,n(u[2],lα,nα )

F [1],l,n
p (u[2],lα,nα )

)
, (68)

In �2 :
⎛⎝ H[2],n −D̃

T ,[2],n

−D̃
[2],n

0

⎞⎠( u[2],l,n
0

p[2],l,n
L

)
=
(

F[2],l,n(u[1],lα,nα )

F [2],l,n
p (u[1],lα,nα )

)
, (69)



B.E. Merrill, Y.T. Peet / Journal of Computational Physics 390 (2019) 121–151 135
where the double underlined assembled operators are now modified with the unassembled Mask matrix for satisfying 
Dirichlet, moving wall, and interface boundary conditions

A[i],n = Q[i] T M[i]
L A[i],n

L M[i]
L Q[i], (70)

B[i],n = Q[i] T M[i]
L B[i],n

L M[i]
L Q[i], (71)

C[i],n = Q[i] T M[i]
L C[i],n

L M[i]
L Q[i], (72)

D̃
[i],n = D̃

[i],n
L M[i]

L Q[i] (73)

and

H[i],n =
(

β0

�t
B[i],n + 1

Re
A[i],n

)
. (74)

The arrays on the right-hand side of (68) and (69) depend on the inhomogeneous solution u[i],l,n
b , due to inhomogeneous 

Dirichlet, moving wall, and interface boundary conditions. It is important to note that the inhomogeneous solution u[i],l,n
b

depends on the solutions from the adjacent subdomain (from previous iterations and/or time steps lα, nα) through the 
dependence of interface conditions via equations (63) and (67), which defines the subdomain coupling

F[i],l,n(u[ j],l,n) = f[i],n − Q[i] T M[i]
L H[i],n

L u[i],l,n
b,L (u[ j],lα,nα ), (75)

F [i],l,n
p (u[ j],l,n) = D̃

[i],n
L u[i],l,n

b,L (u[ j],lα,nα ), (76)

with

H[i],n
L =

(
β0

�t
B[i],n

L + 1

Re
A[i],n

L

)
. (77)

Note that assembled operators are subdomain dependent, since they depend on different Jacobians, and time dependent, 
since Jacobians change as the mesh moves, although they are not iteration dependent for the reasons stated in Section 2.2.8. 
Mask matrices and connectivity operators are subdomain dependent, although they do not depend upon time or iteration 
count in the current methodology.

The coupling terms in the right-hand side of (68) and (69) are updated at the beginning of each iteration and the Stokes 
problems are solved independently for each subdomain. Note that the Stokes problem arising in the coupled formulation 
differs from the corresponding Stokes problem of a single domain given by Eqs. (52)–(53) only by the presence of the 
coupling terms in the right-hand side of equations, thus the matrix factorization with high-order splitting methods for the 
coupled Stokes problem proceeds in the same way as discussed in Section 2.2.5, see also [72]. Additionally, the pressure 
correction term pn − pn−1 will be replaced by pl,n − plmax,n−1 due to the addition of iterations in the coupled problem. 
While bolded operators represent block-diagonal formulations of the scalar-valued operators, as discussed previously, the 
interpolating derivative operator is defined D̃

[i],n =
[

D̃1
[i],n

D̃2
[i],n

D̃3
[i],n]

to ensure proper multiplication of D̃
T ,[i],n

and 

p[i],l,n
L

. In the current formulation, the pressure field obtained in each subdomain is defined up to an arbitrary constant. The 
pressure field is further adjusted by matching the subdomain pressure solutions at a single spatial location that allows for 
a pressure field that is consistently defined throughout the global domain.

2.3. Schematic of the procedure

A schematic of the coupled solution procedure is given in Fig. 4. As discussed above, the procedure in each subdomain 
is fairly autonomous, with, apart from initialization, only search and iteration steps requiring global communication. Since 
the mesh geometry is updated once per timestep, the search step is also required once per timestep to determine the 
correct primary coordinates of each interface point in terms of the coincident elements in the neighboring mesh. The 
interpolation step, however, is required once per iteration to ensure that the most recent solution set is used for the 
interface conditions. In the next section, we describe the parallelization strategy for the methodology, focusing on global 
communication procedures, as single-domain parallelization procedures were described elsewhere [73].

3. Parallel communication

Parallel implementation of the moving overlapping domain method is based on a dual-session communication framework 
previously developed by the authors [84,72]. The framework allows for fully independent computations in each session, 
while enabling the sessions to communicate with each other at certain global checkpoints. Within each session, commu-
nication among local processors is handled with MPI Intracommunicators, while global communication is accomplished 
through the establishment of an MPI Intercommunicator [72].
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Fig. 4. Basic procedures for computation of moving overlapping mesh methodology. Steps requiring global communication are in italic.

In a computation involving the moving overlapping domain method, global communications can be categorized into 
two groups associated with the interface conditions exchange procedure as described in Section 2.2.8: Search step and 
Interpolation step. During Search step, each processor at a given subdomain scans through the GL points in its custody that 
are flagged as “interface” points. Since interface boundaries in the current implementation are not altered throughout the 
simulation, this flagging is performed only once per simulation, usually during a grid construction process. The total number 
of interface points found by each processor at a given session during the Search step is divided equally among the processors 
in the other session, and the point identities (including physical coordinates in the laboratory frame) are distributed via the 
Intercommunicator among the processors in the other session. Upon receipt of point identities, the sessions independently 
determine whether each “interface” point lies within their subdomain boundary, and if it does not, the point is sent back to 
its originating session where it is treated with user prescribed Dirichlet condition instead of interpolation. For all accepted 
interface points within the subdomain’s boundaries, the Search Step proceeds to determine which local element encompasses 
each of these points. The points are then locally distributed to the corresponding “owner” processors via a Crystal Router 
Algorithm [85] which uses fast all-to-all communications for efficient data transfer, and is built into the SEM solver. The 
Search step continues by determining and tabulating the primary coordinates of each point with respect to the element in 
which it lies. During the Interpolation Step, the parallel interface and the tabulated point coordinates built during the Search 
step are efficiently utilized to perform, via a Crystal Router, a spectral interpolation of the corresponding solution variables 
to the interface points. The interpolated values are passed back to the neighboring session via the Intercommunicator, where 
the information is unwrapped and sent locally (through Intracommunicators) back to the processors requiring each interface 
point data. The interpolated values are utilized as inhomogeneous Dirichlet conditions at the interface boundaries at each 
subdomain.

As opposed to our previous stationary overlapping grid methodology [72], where the Search step needed to be performed 
only once per simulation, in the case of the moving grids, it needs to be performed at every time step, since the relative 
position between the grids changes dynamically. However, it does not have to be performed at every iteration step, as 
opposed to Interpolation step, which does. Although Search step is the most expensive part of the parallel communication 
procedure, an efficient implementation of the current dual-session framework together with utilization of optimized Crystal 
Router routines whenever possible, does not hinder the scalability and efficiency of the algorithm, as demonstrated in 
Section 4.4 via scalability tests.

Note that the current numerical formulation of the moving overlapping methodology is general enough so that the 
flexible/deforming domain motions can be handled as well, although the current paper is concerned strictly with the rigid 
body motions, where grid deformation is not necessary. The methodology however does not allow at the present moment 
for the addition or removal of the elements from the subdomains, so that the “hole-cutting” is currently not considered [47,
86]. All the present test cases employ grids that are designed to preserve the topology of the overlap region during the 
subdomain motion.

4. Results

The capability of the developed moving overlapping grid method will be demonstrated through two- and three-
dimensional example problems. The spatial and temporal accuracy of the scheme will be documented, and the method’s 
ability to realistically model fluid flow when influenced by moving rigid bodies will be illustrated. Computational param-
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Fig. 5. Two-mesh domains for convecting eddy simulations, with element boundaries shown.

eters for the test cases presented in the current paper were chosen primarily based on the availability of the previously 
published data for a direct comparison, as is detailed below.

4.1. Convecting two-dimensional eddies

The spatial and temporal convergence rates are determined from a simulation of convecting eddies in a periodic global 
domain, comprised of two subdomains, for which an exact solution exists [87]. The original Walsh solution [87] reflects 
a case of stationary eddies decaying in time and is represented by a linear combination of the eigenfunctions that are 
products of Sin[nx] or Cos[nx] with Sin[my] or Cos[my], with the corresponding eigenvalues λ = −(n2 + m2), where n and 
m are non-negative integers. For the eddies convecting with the constant velocity (u0, v0), the solution can be found by 
transforming the Walsh’s solution from convecting into a stationary frame of reference. Please, see [72] for more details of 
the convecting eddy case including the derivation of the pressure solution. The same exact solution as in [72] was used 
for the present test case. For the pressure comparison, the pressure field that has a zero mean value on the global domain 
is used for both exact and computational solutions. The mean pressure value of the solution on the global domain can be 
calculated by treating grid points within the overlap region with a weight of one-half during the calculation of the global 
averages, see [72] for more details. The calculated global mean value then can be subtracted from both subdomain solutions 
to arrive at a zero-mean pressure field.

The global 2π × 2π two-dimensional domain is decomposed into an interior and exterior mesh. The exterior mesh 
contains a vacancy at its center which is covered by the interior mesh. Two configurations of interior grids were used, a 
circular mesh and a square mesh, as seen in Fig. 5. In all simulations the exterior mesh was held stationary and the interior 
mesh was constrained to move in a prescribed fashion. Note that this motion is a type of “pseudo”, or “virtual”, motion as 
the movement of the mesh has no effect on the flow since there are no solid structures contained within. In the first set 
of verification cases, both circular and square interior meshes were constrained to rotate, while in succeeding simulations 
sliding motion was prescribed.

Simulations were performed with Re = 20, where the Reynolds number is defined, Re = L∗U∗/ν∗ , with L∗ the reference 
length, U∗ the reference velocity, and ν∗ the kinematic viscosity. Quantities with stars denote the dimensional quantities, 
and the ones without stars are non-dimensional. All non-dimensional length and velocity variables are given here, with the 
presumption that corresponding dimensional counterparts were normalized by L∗ (taken here as L∗ = L∗

x/(2π), where L∗
x is 

the domain length in x direction), and by U∗ equal to the eddy convection velocity in x-direction.
For the rotating mesh test cases, interior meshes are rotated counter-clockwise as rigid bodies about their center of mass, 

which coincides with the center of the global domain [π, π ], with a non-dimensional angular velocity � = �∗L∗/U∗ = π/4. 
For sliding mesh cases, the interior mesh slides to the right with the non-dimensional velocity w = w∗/U∗ = 1.5.

In Fig. 6, we show velocity magnitude contours of rotating interior mesh simulations with fluid convection velocity u0 =
u∗

0/U∗ = 1 and v0 = v∗
0/U∗ = 0.3, one with the circular and one with the square interior mesh. This particular convection 

velocity was chosen so that direct comparison with the results of a stationary overlapping mesh case published in [72] was 
possible. Note that in the overlap region, two sets of contour lines are presented, although the continuity of values between 
the two subdomains is such that discrepancies between values in the overlap region are difficult to visually detect.
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Fig. 6. Velocity magnitude contours of rotating interior mesh simulations at a non-dimensional time t = U∗t∗/L∗ = 0.1. The darkest contour lines represent 
a non-dimensional velocity magnitude of three, while the lightest lines, zero. The simulations were performed with 8th-order polynomial approximations, 
and �t = 1 × 10−4 using second order temporal accuracy and IEXT2, with two iterations per timestep.

We proceed by looking at L2-norms of the velocity and pressure errors, which are calculated for each subdomain:

L2-error (uuu[i]) =
√√√√ 1

dV [i]

∫
�i

(uuu[i]
ex − uuu[i]

comp)2dV, (78)

L2 error (p[i]) =
√√√√ 1

V [i]

∫
�i

(
p[i]

ex − p[i]
comp

)2
dV, (79)

where V [i] is the volume of the subdomain �i , d is the spatial dimension (d = 2 in the current problem), and ex and comp
subscripts are used to denote exact and computational values, respectively. Errors for all simulations were collected at a 
non-dimensional time t = 0.1.

Results are compared with the data from our previously validated overlapping mesh methodology for stationary 
meshes [72], where Fig. 7 shows velocity errors with respect to polynomial refinement. Note that for sliding meshes, we 
present data only for the square interior mesh for compactness, however the results for the circular interior mesh show 
similar trends.

Results from the moving overlapping mesh methodology closely correlate with the stationary overlapping mesh data. 
Both interior and exterior meshes achieve full convergence at the polynomial orders between 13th and 15th, using the 
non-dimensional timestep of �t = 1 × 10−4, with exterior meshes usually converging first. In addition, convergence of both 
meshes is slightly lower for the circular interior mesh cases. A slightly lower convergence rate for circular interior mesh 
cases is associated with a slower convergence of the SEM on curvilinear meshes [88,74,89,72], and not a result of the 
moving overlapping mesh methodology. In spite of different slope values in the convergence curves, the convergence with 
rotating and sliding meshes is still exponential in each case.

Temporal accuracy for both the rotating and sliding interior meshes is presented in Fig. 8. The accuracy in each case 
achieves the expected third-order convergence rate, where BDF3 and IEXT3 were used.

Pressure accuracy also achieves spectral spatial convergence and the desired third-order temporal convergence rate for 
each subdomain in all the cases considered. Figs. 9 and 10 show the data for the cases with a square interior mesh.

4.2. Two-dimensional oscillating cylinder

The next example considers the flow over an oscillating cylinder and tests the performance of the method in the presence 
of a solid moving object. The domain is assigned a uniform free stream velocity U ∗∞ at the left boundary with outflow 
conditions specified on the opposing side. Outflow conditions are defined, in non-dimensional form, as ∇uuu · n̂ = 0 on ∂�O , 
where n̂ is the normal unit vector and ∂�O is the outflow boundary. Here, all spatial variables are non-dimensionalized 
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Fig. 7. Velocity errors with respect to changing solution polynomial order. The tests were performed with timestep �t = 1 × 10−4 using BDF3 and IEXT3, 
with four iterations per timestep, and errors were collected at t = 0.1. The (St) denotes data from stationary overlapping mesh simulations.

Fig. 8. Velocity errors with respect to changing timestep. The tests were performed with 17th-order polynomials using BDF3 and IEXT3, with four iterations 
per timestep, and errors were collected at t = 0.1. The (St) denotes data from stationary overlapping mesh simulations, and a reference line is displayed for 
comparison to the expected convergence rate.

Fig. 9. Spatial convergence of pressure errors. The tests were performed with timestep �t = 1 × 10−4 using BDF3 and IEXT3, with four iterations per 
timestep, and errors were collected at t = 0.1. The (St) denotes data from stationary overlapping mesh simulations.
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Fig. 10. Temporal convergence of pressure errors. The tests were performed with 17th-order polynomials using BDF3 and IEXT3, with four iterations per 
timestep, and errors were collected at t = 0.1. The (St) denotes data from stationary overlapping mesh simulations.

Fig. 11. Geometry of the oscillating cylinder case, with element boundaries shown. All distances are in terms of the cylinder diameter.

with the cylinder diameter D∗ , and velocity variables with the free-stream velocity U∗∞ , with Re = U∗∞D∗/ν∗ . Symmetry 
boundary conditions are imposed on the top and bottom of the domain. The horizontal velocity of the cylinder is set to 
zero, while the vertical component of motion is governed by the equation

y(t) = y0 + Asin(2π f0t), (80)

where A = y∗
max/D∗ (y∗

max is the largest vertical displacement of the cylinder) represents the non-dimensional amplitude 
and f0 = f ∗

0 D∗/U∗∞ represents the non-dimensional frequency of oscillation. The cylinder is initially placed at (0,0) such 
that y0 = 0 in Eq. (80), with the global domain spanning from x = −10 to 50 diameters, and y = −15 to 15 diameters. We 
also define the frequency ratio F = f ∗

0 / f ∗
v where f ∗

v is the vortex shedding frequency of the fixed cylinder.
The global domain is decomposed into two overlapping subdomains, with the exterior mesh (see Fig. 11) containing 

a vacancy for the cylinder movement, and the interior mesh containing the 2D cylinder itself. During the simulations, 
the exterior mesh remains stationary while the interior mesh is constrained to move with the equation of the oscillation 
given by Eq. (80). The interior mesh is constructed not to slide out of the global domain or out of the vacancy during the 
simulations.

4.2.1. Stationary cylinder
For an accurate comparison with the previously published data [90–94], the Strouhal number, or vortex shedding 

frequency, from the flow around the stationary cylinder was first determined using our previously validated stationary 
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Table 2
Results for a stationary cylinder with Re = 500 in uniform flow using overlapping 
meshes compared with data presented in [95]. The present data used BDF2/IEXT2 
time stepping with 7th order polynomial approximations, �t = 2.5 × 10−3 and two 
iterations per timestep. Present averages were taken over the interval 300 ≤ t ≤ 600, 
with the solution reaching an asymptotically periodic state at t ≈ 100.

Present data Blackburn et al. [95]

St 0.2281 0.2280
Ĉl 1.202 1.200
Cd 1.461 1.460
−C pb 1.504 1.506

Fig. 12. Enlarged plot of x-direction velocity contours of oscillating cylinder simulation at Re=500 with A=0.25 and F=1.0, at t = 100. The lightest lines 
represent velocity of u∗/U∗∞ = −0.5 while the darkest lines represent u∗/U∗∞ = 1.5. Solution approximations are calculated using BDF2/IEXT2 time stepping, 
with 7th-order polynomials, �t = 2.5 × 10−3, and two iterations per timestep.

Table 3
Results for an oscillating cylinder with Re = 500, F = 1.0 and A = 0.25 in a uniform 
flow compared with results in [95]. BDF2/IEXT2 was run with 7th-order polynomial 
approximations, �t = 2.5 × 10−3 and two iterations per timestep while BDF3/IEXT3 
was run with 9th-order polynomial approximations, �t = 2 × 10−3 and seven it-
erations per timestep. The averages for both schemes were taken over the interval 
250 ≤ t ≤ 550, with an asymptotically periodic state reached at t ≈ 75.

BDF2/IEXT2 BDF3/IEXT3 Blackburn et al. [95]

Ĉl 1.781 1.781 1.776
Cd 1.417 1.415 1.414
−C pb 1.377 1.374 1.377

overlapping mesh methodology [72]. Strouhal number is given as St ≡ f ∗
v D∗/U∗∞ , or just f v with the current normalization. 

At Reynolds number of 200, our simulations produced a Strouhal number of 0.1998 compared with the Strouhal number of 
0.198 found in Udaykumar et al. [94] and of 0.197 found in Williamson et al. [93] at the same Reynolds number. The mean 
drag of our simulation was 1.372, while Udaykumar et al. [94] found a value of 1.38.

Table 2 compares the values from our overlapping mesh methodology for fixed meshes, at Re = 500, with values pub-
lished by Blackburn et al. [95] for the stationary cylinder in uniform flow at the same Re. The Strouhal number is denoted 
by St, while Ĉl represents the peak coefficient of lift, Cd is the mean (time-averaged) coefficient of drag, and C pb is the 
mean base pressure coefficient calculated from the pressures at the furthest upstream (p∗

0) and downstream (p∗
180) points 

on the cylinder surface, C pb = 1 + 2(p∗
180 − p∗

0)/ρ
∗U∗2∞ .

4.2.2. Oscillating cylinder
Fig. 12 depicts the x-direction velocity contours of vortices shed from an oscillating cylinder as they travel from the 

interior mesh across the interface boundary to the exterior mesh. The overlap region contains two sets of contour lines, and 
visual inspection shows good continuity between the values reported by the two meshes in the overlap region.

The peak lift forces, the mean drag forces, and the mean pressure differences on the oscillating cylinder are compared 
with the results from [95] in Table 3 for a frequency ratio of 1.0, non-dimensional amplitude 0.25, and Re = 500 for both 
sets of data. To assess the stability and performance of the third-order accurate temporal scheme for moving rigid bodies, 
this case was also run with the BDF3/IEXT3 scheme. As can be seen from the Table 3, agreement between the second- and 
third-order temporal schemes is excellent and both results are very close to the Blackburn et al. [95] data.

In his experimental investigations, Koopmann [91] observed certain frequencies and amplitudes of oscillation that en-
abled ‘lock-in,’ where the vortex shedding frequency is equal to the oscillation frequency of the cylinder. Outside of this 
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Fig. 13. ‘Lock-In’ data compared with experimental data from Koopmann [91]. The region inside the solid lines represents Koopmann’s lock-in region, the 
squares represent simulations performed using the moving overlapping mesh method (filled squared displayed lock-in, hollow squares did not). These 
simulations were performed using BDF2/IEXT2 time stepping with 7th order polynomial approximations, �t = 2.5 × 10−3 and two iterations per timestep. 
Re = 200 was used for both experimental and numerical data.

lock-in region, the vortex shedding frequency converges to the fixed-cylinder vortex shedding frequency denoted as Strouhal 
frequency [91,94]. Lock-in behavior of the vortex shedding is a result of the relationship between the vortex formation near 
the surface of the cylinder and the changing velocity and acceleration of the cylinder with respect to the fluid that causes 
portions of the forming vortices to detach at different positions with respect to the cylinder’s cycle [92]. Fig. 13 shows 
lines that represent the lock-in region established by Koopmann [91], with data from our moving overlapping mesh method 
showing which simulations exhibited the lock-in behavior and which didn’t. The present data displays good correlation with 
the experimental results reported in [91].

4.3. Rotating 2D cylinder and 3D sphere

In this section, we consider an interaction of the incoming stream with the rotating solid body. This case serves two 
purposes: in the first part, we verify the accuracy of the approach in the presence of moving solid boundaries, and in the 
second part, we extend the methodology to a three-dimensional example.

4.3.1. Rotating 2D cylinder
The spatial convergence analysis was performed on a rotating 2D cylinder. The left boundary is assigned uniform 

freestream velocity, U∗∞ , with outflow conditions prescribed at the opposite side, and symmetry conditions on the top 
and bottom boundaries. Spatial variables are non-dimensionalized using the cylinder diameter D∗ , and velocity variables 
with the free-stream velocity U∗∞ , with Re = U∗∞D∗/ν∗ .

A baseline case was developed as a single mesh with an embedded cylinder (see Fig. 14 a) for a spatial self convergence 
analysis. Dirichlet boundary conditions were prescribed at the cylinder wall to ensure a cylinder angular velocity of � =
2.0, where the non-dimensional angular velocity is given by � = �∗D∗/(2U∗∞), and the prescribed Reynolds number was 
200. The simulation was performed using 17th order polynomial approximations and 3rd order timestepping (BDF3) with 
timestep �t = 1 × 10−5.

A moving overlapping mesh case (see Fig. 14 b) was developed for comparison to the baseline case. The interior, moving, 
mesh was prescribed a rotational velocity � = 2.0, while the exterior mesh was held stationary. All moving overlapping 
mesh simulations were performed using BDF3/IEXT3 and 7 iterations per timestep with timestep �t = 1 ×10−5, at Re = 200. 
Fig. 15 shows exponential spatial convergence for velocity in both the interior and exterior meshes as the polynomial order 
nears that used for the single mesh case.

4.3.2. Rotating 3D sphere
In this test case, we extend our benchmarking to a three-dimensional situation and compare to the previously pub-

lished data [96–98]. The setup is similar to the one in the rotating cylinder case, albeit in three dimensions, with the 
three-dimensional subdomain mesh topologies illustrated in Fig. 16. A spherical mesh is formed around the solid walled 
sphere, which is positioned to cover a vacancy within a large outer mesh. The inner mesh is created to ensure that at 
least nine grid points lie within the laminar boundary layer for all the simulations performed. Steady inflow velocity U ∗∞ is 
prescribed at one end of the outer mesh and outflow boundary conditions are set at the other, while a steady rotation of 
the sphere is imposed by establishing the inner mesh velocity with the ALE formulation. Note that the current setup could 
have been accomplished through a single stationary mesh by assigning non-zero, rotating Dirichlet velocity conditions at 
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Fig. 14. Geometry of the rotating cylinder case, with element boundaries shown. Distances are presented in terms of the cylinder diameter.

Fig. 15. Spatial velocity convergence for the rotating cylinder case. All simulations were performed with timestep �t = 1 × 10−5 using BDF3/IEXT3, with 
seven iterations per timestep, and errors were computed at t=40.

Fig. 16. Mesh geometry of transversely rotating sphere simulation [Not scaled relative to each other]. The subdomains displayed have sections removed for 
visualization of the solid sphere and vacancy, for the inner and outer meshes respectively.
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Table 4
A tabular listing of regimes observed in the present simulations for each rotating sphere case 
performed in the present study.

Re = 100 Observed Re = 250 Regime Re = 300 Observed
� regime � � regime

0.0 Steady 0.0 Steady 0.0 Unsteady
0.05 Steady 0.05 Transitional 0.05 Unsteady

0.078 Unsteady
0.1 Steady 0.1 Unsteady 0.1 Unsteady

0.2 Unsteady Unsteady
0.25 Steady 0.25 Unsteady
0.3 Steady 0.3 Transitional 0.3 Unsteady
0.5 Steady 0.5 Steady 0.5 Steady
0.6 Steady 0.6 Steady 0.6 Steady
0.8 Steady 0.8 Steady 0.8 Transitional
1.0 Steady 1.0 Steady 1.0 Transitional

a sphere boundary [96,99,97,98], and the aforementioned data will be used here for validation of our moving overlapping 
mesh method.

Results are presented for several different inner mesh angular velocities, using Reynolds numbers (Re = D∗U∗∞/ν∗) of 
100, 250, and 300, which correspond with those reported in a computational study of Giacobello et al. [98]. These Reynolds 
numbers lie within three different regimes for uniform flow around a stationary sphere, of which a detailed investigation 
and description can be found in [100]. The flow around a stationary sphere at Re = 20 − 210 is axisymmetric and steady, 
while a steady transition regime appears as Reynolds numbers increase beyond 210 and the flow becomes non-symmetric, 
until Re ≈ 270 where the flow becomes unsteady and vortex shedding begins to occur. When the rotation is added to the 
sphere, the flow patterns change depending on the angular velocity. The list of the calculated cases is presented in Table 4.

The drag and lift coefficients, determined by forces on the sphere: C D = F ∗
D/( 1

8 ρ∗
f U∗2∞π D∗2) and CL = F ∗

L /( 1
8 ρ∗

f U∗2∞π D∗2), 
where ρ∗

f is the fluid density, were used in comparison with results reported in [96–98] and can be seen in Fig. 17 where 
the non-dimensional angular velocity is given by � = �∗D∗/(2U∗∞). Specific viscous and pressure contributions to the total 
force are reported for additional comparison. As can be seen from the figure, the forces calculated using our moving over-
lapping mesh method correlate well with the published results found in [96–98]. As with the oscillating cylinder case, one 
of the rotating sphere cases (Re = 300, � = 0.05) was also run with the third-order time stepping to address the stability 
of the scheme in this setup. The drag, lift and pressure forces calculated with the third-order scheme are indistinguish-
able from those of the second-order scheme, and the Strouhal number matches as well, as can be seen in Figs. 17 and 18
respectively.

For two of the higher Reynolds numbers, Re = 250 and Re = 300, Giacobello et al. [98] observed three different regimes 
depending on the angular velocity: steady regime when the vortex shedding is not observed throughout a duration of the 
simulations; transitional regime when the vortex shedding initially occurs and then dies out; and fully unsteady regime, 
with the vortex shedding persisting until the end of the simulations (the flow was always in a steady regime for Re = 100
for the tested angular velocities). We noticed a similar behavior in our simulations, with corresponding regimes for our 
cases listed in Table 4.

For the Reynolds numbers Re = 250 and Re = 300, we calculated Strouhal numbers of the vortex shedding for the 
tested angular velocities and compared them with the data of [96–98] in Fig. 18. Following Giacobello et al. [98], for the 
transitional cases (for which the vortex shedding initially occurs and then dies out), we present initial and not final vortex 
shedding frequency (which would be zero). Zero frequency in this plot thus corresponds to steady cases. As can be seen, 
a comparison of Strouhal numbers for different angular velocities and Reynolds numbers (see Fig. 18) also shows excellent 
correlation with the published data. Visual comparison of trailing vortices between our results and those of Ref. [98] is 
performed in Fig. 19 for Re = 250 and 300. Vortices are visualized using the λ2-criteria [101]. As can be seen, the observed 
vortical structures reveal excellent resemblance with the figures reported in [98].

4.4. Computational scaling

Scaling analyses were performed on Stampede supercomputing resources in conjunction with a computational resources 
allocation through XSEDE. The test simulation for scaling studies consisted of a three-dimensional turbulent pipe flow with 
an exterior and interior overlapping meshes (a cross-section of each is shown with element boundaries in Fig. 20) so that 
a one-to-one comparison with the corresponding scaling analysis of the stationary overlapping method documented in [72]
could be made. The interior and exterior meshes overlapped along the entire length of the pipe, and no-slip boundary 
conditions were enforced on the outer cylindrical boundary of the exterior mesh, representing the wall, while periodic 
boundary conditions were given at the pipe ends. The global problem contained a total of 51.2k elements (12.8k in interior 
mesh, 38.4k in exterior mesh), with the total number of grid points varied based upon the polynomial order used for 
solution approximations. The simulations were performed with Reynolds number of 5300 based on the pipe diameter. Note 
that the mesh resolution for this Reynolds number is much higher than is needed for a Direct Numerical Simulation of the 
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Fig. 17. Comparison of force coefficients at Re=100, 250, and 300. Closed symbols represent present data, and open symbols represent data reported in 
previous publications [96–98]. Closed upright triangles represent the viscous contribution, closed squares represent the pressure contribution, and closed 
diamonds denote the total force coefficient in the present data computed with BDF2/IEXT2. A cross symbol corresponds to Re = 300, � = 0.05 case com-
puted with BDF3/IEXT3. Open circles, open inverted triangles, and open diamonds represent data given for the total force coefficient in [96], [97], and [98]
respectively. Open squares denote the pressure contribution, and open upright triangles the viscous contribution, as reported in [98]. The simulations 
with BDF2/IEXT2 were performed using 5th-order polynomial approximations, �t = 5 × 10−3 and two iterations per timestep, while the simulation with 
BDF3/IEXT3 was performed using 5th-order polynomial approximations, �t = 5 × 10−3 and five iterations per timestep.
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Fig. 18. Comparison of Strouhal numbers given by the present simulations and data presented in [96–98]. All data at Re = 250 is given with dashed lines, 
while all data at Re = 300 is given with solid lines computed with BDF2/IEXT2. A cross symbol corresponds to Re = 300, � = 0.05 case computed with 
BDF3/IEXT3. Symbols represent data as follows: hollow diamonds - present data with Re=250, hollow squares - present data with Re = 300, hollow upright 
triangles - Kurose and Komori [96] with Re = 300, hollow inverted triangles - Niazmand and Renksizbulut [97] with Re = 250, filled inverted triangles -
Niazmand and Renksizbulut [97] with Re = 300, hollow circles - Giacobello et al. [98] with Re = 250, filled circles - Giacobello et al. [98] with Re = 300. 
The simulations with BDF2/IEXT2 were performed using 5th-order polynomial approximations, �t = 5 × 10−3 and two iterations per timestep, while the 
simulation with BDF3/IEXT3 was performed using 5th-order polynomial approximations, �t = 5 × 10−3 and five iterations per timestep.

Fig. 19. Visual comparison of shed vortices as reported in [98] (top visualization in each subfigure) with present results (bottom visualization in each 
subfigure). Vortex iso-surfaces are presented using λ2 criteria [101] at λ2 = −8 × 10−4 (same for both sets of data). The presented data is for BDF2/IEXT2 
scheme with 5th-order polynomial approximations, �t = 5 × 10−3 and two iterations per timestep. Visualizations of the wake are displayed up to 16 
diameters downstream.

Fig. 20. Transverse cross-section of the grids for two-mesh pipe flow simulations used in scalability analyses. Element boundaries are shown. The displayed 
meshes extend 6 pipe diameters in the z-direction.
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Fig. 21. Scaling of overlapping mesh simulations using 6th, 7th, and 8th order polynomial approximations. Meshes are identical for moving and stationary 
mesh cases. Parallel partitioning was utilized assigning cores to each sub-domain proportional to the corresponding mesh sizes. The timestepping scheme 
BFD2 with IEXT2 and two iterations per timestep was used for each simulation, with �t = 1 × 10−3.

Fig. 22. Time spent in different components of the moving overlapping mesh methodology. Filled circles represent total time per timestep, filled diamonds -
time spent in all components handling inter-mesh communication, filled inverted triangles - the search step, filled upright triangles - extrapolation, hollow 
squares - 1st interpolation step, filled squares - 2nd interpolation step. For computational parameters see Fig. 21.

pipe flow, and large element counts were used mainly for scalability analysis on large number of processors. The interior 
mesh was constrained to rotate in the moving mesh simulations with a rotational velocity of � ≡ �∗D∗/U∗

b = 1, where U∗
b

is the bulk flow rate of fluid in the pipe, which, as in the test case of convecting eddies, represents a “virtual movement” 
and does not affect the flow. The current test case (including turbulent statistics) was validated in [72] for a fully developed 
turbulent flow with the same Reynolds number and zero interior mesh velocity. Turbulent statistics were not collected for 
the rotating mesh cases, that were used primarily for scalability studies.

The scaling analyses (Fig. 21) show near linear strong scaling for both stationary and moving overlapping simulations. 
The timing data for different polynomial orders collapses when scaled with respect to the number of gridpoints per core 
(Fig. 21 (b)) indicating robust parallel performance.

Fig. 22 shows a breakdown of the percentage of wall time per timestep spent in components of the moving overlapping 
mesh code that deal with inter-mesh communications. Notice that the percentage of wall time spent in the interpolation 
and extrapolation steps is very small while a much more sizable percentage of wall time per timestep is expended in the 
search step. The total percentage of time spent in inter-mesh communications is still significantly smaller than the time 
spent in computations.
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Fig. 23. Percent change in global computation time, comparing the present moving overlapping mesh methodology (hollow circles) with the traditional sin-
gle mesh implementation, and also our stationary overlapping mesh methodology [72] (hollow diamonds) with the traditional single mesh implementation. 
For computational parameters see Fig. 21.

Fig. 23 illustrates the percent change in wall time per timestep going from the traditional single mesh solver to the 
moving overlapping mesh solver (of the same total element count), and from our stationary overlapping mesh solver [72]
to the moving overlapping mesh solver. While more wall time per timestep is understandably spent in moving overlapping 
mesh simulations, the results, again, confirm that the overall scalability of the global code is maintained.

5. Conclusion

Knowing the characteristics of fluid flow around moving solid bodies is important in many real world problems. Tra-
ditionally, solvers that can handle the flow around moving bodies, including body conforming and fixed mesh methods, 
achieve lower orders of convergence. Our developed moving overlapping mesh methodology maintains high orders of global 
accuracy in space and time, by utilizing a spectral-element computational code combined with a spectral spatial interpola-
tion and a high-order temporal extrapolation at the interface nodes. Simulations of convecting eddies on moving meshes, 
where exact solutions are known, showed expected rates of spatial and temporal convergence consistent with the under-
lying accuracy of the global numerical scheme. A self convergence test with the two-dimensional rotating solid cylinder 
also exhibited an expected exponential spatial convergence in the presence of solid moving boundaries. Solving for the 
incompressible flow around a two-dimensional oscillating cylinder produced aerodynamic forces in line with published 
computational data, and showed lock-in behavior of vortex shedding corresponding with Koopman’s experimental find-
ings [91]. Extension of the method to three-dimensional domains has shown a robust modeling of the vortices shed from 
a rotating sphere and produced a quantitative data that are consistent with the results found in literature. The presented 
incompressible flow solver with moving overlapping meshes achieves near linear scaling for large processor counts. While 
a theoretical stability analysis of the overlapping grid interpolation on the moving domains will be addressed in our future 
work, the test cases show a stabilizing behavior of the subdomain iterations, similar to the stationary overlapping domain 
method [72,78]. In the present work, only two iterations were needed to attain stable solutions with the second-order 
temporal scheme for the cases tested, and between four and seven iterations for the third-order temporal scheme. While 
stability when using the explicit interface extrapolation scheme is enhanced with a small number of iterations, this is vastly 
different from implicit coupling methods that require iteration counts in the order of hundreds solely to achieve a desired 
order of temporal accuracy. The current method lends itself as a reliable tool for performing high-fidelity simulations of 
moving bodies in the presence of unsteady, transitional and turbulent environments (see, for example, Ref. [102], where 
Direct Numerical Simulations of a cyclically pitching airfoil in a wake of an upstream cylinder were performed with the 
current methodology for the Reynolds number Rec=44,000 based on the airfoil chord length). A limitation of the present 
implementation of the methodology is the inability to add or remove elements from the subdomains on the fly, so that the 
“hole-cutting” is not currently a feature. This inflicts some restrictions onto a generality of the relative subdomain motions 
that can be considered, which can be further relaxed when hole-cutting is implemented, and is the subject of our future 
work.
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