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ABSTRACT
Direct Numerical Simulations (DNS) of turbulent pipe flow

with periodic inflow/outflow boundary conditions at the ends of

a 12 diameter long pipe domain are performed at Reynolds num-

bers=170, 360 and 720. We simulate standard pipe flow with mo-

tionless wall and pipe flow in which drag is reduced by oscillating

the wall in the azimuthal direction. We present space-time correla-

tions of the streamwise velocity with separation in the streamwise

direction and examine the effect of periodic in-flow/out-flow. It is

found that the turbulent fluctuations maintain significant correla-

tion well beyond the time it takes to flow through the simulation

domain, implying that streamwise periodicity is not a benign con-

dition, at least for the 12 diameter domain length. We compute

the convection velocity from the space-time correlation using the

method of Wills (1964) and a new method obtained from the auto-

correlations with pure spatial separation and pure time separation,

quantities which are much less computationally demanding than

the full space-time correlation. The new method uses the the val-

ues of the separation in space and time at which the respective

correlations first cross zero. Fair agreement is found between the

two methods, although the method of zeroes is sensitive to noise

in the correlation functions. We also find that the temporal coher-

ence of large-scale motions increases markedly in space and time

in the frame of the convection velocity when the drag is reduced

by wall oscillation.

Introduction
Space-time correlation provides interesting insights not

found in space or time correlations, especially in flows having

strong mean velocities. In this paper we consider flow in an oscil-

lating pipe. The space-time auto-correlation coefficient of stream-

wise velocity fluctuation U with streamwise separation, ∆X , and

time-delay, ∆t, is given by

ρuu(r,∆x,∆t) =
⟨u(r,θ ,x, t)u(r,θ ,x+∆x, t +∆t)⟩x,θ ,t

⟨u2⟩
(1)

where averaging is done by integrating over the stream-wise ( or

axial) direction, x, the azimuth angle, θ , and time,t. The zero

mean turbulent velocity fluctuation is a periodic and statistically

homogeneous function of 0 < x < L and 0 < θ < 2∗ pi and a sta-

tistically stationary function of t. r is the radial distance from the

center-line, R is the radius of the pipe, and L is the length of the

simulated flow domain. Later we shall use 0 < y = R− r < R to

denote the distance from the pipe wall. Periodicity in x is a conse-

quence of using the periodic inflow/outflow boundary condition,

ui(x,r,θ) = ui(x+ L,r,θ), i = 1,2,3, a condition that is thought

to emulate flow that is statistically homogeneous in x provided

L/R is sufficiently large. The sufficiency condition is not well un-

derstood, nor is the approach to statistically homogeneous flow

in an infinitely long pipe. One idea is that L is sufficiently large

if there is a range L0 << L−L0 in which the spatial correlation

coefficient ρ(∆x,∆t = 0) = 0, and that range L0 is a substantial

fraction of L. Conceptually, structures in this range would be un-

correlated with structures at the inlet or the outlet, suggesting that

that the inlet/outlet conditions have no effect on structure in this

range. However, uncorrelatedness does not imply statistical inde-

pendence, so the inference must be considered weak.

The convection velocity of turbulence describes the average

speed at which turbulent structures (eddies) move downstream. Its

principal use occurs in applications of Taylor’s Frozen Field Hy-

pothesis (Taylor (1938)), an approximation that makes it possible

to estimate the two-point correlation function with spatial sepa-

ration in terms of the two-point correlation function with time-

delay. The latter correlation is found readily from experimental

time-series data which are the natural outcome of physical experi-

ments using a velocity probe at a fixed point. If the probe has high

frequency response, the inferred two-point spatial correlation has

high resolution in space. Conversely the Frozen Field Hypothesis

can also be used to convert highly resolved spatial data computed

by numerical simulation into temporal data. The Hypothesis as-

sumes that the velocity structure of the turbulence does not change

during the time it convects past the probe (Townsend (1980)). It

is variously assumed to be equal to the local mean velocity or the

bulk mean velocity, but neither value is necessarily correct a pri-

ori, and this ambiguity is a major source of error in the correla-

tion functions inferred using Taylor’s Hypothesis Del Alamo &

Jiménez (2009)),Zaman & Hussain (1981)).

The classical definition of convection velocity given by

Wills(1964) (Wills (1964)) is based on the full two-dimensional

space-time correlation . This has resulted in convective velocities

being approximated using comparatively short time-correlations.

Under these conditions the short time-scales of turbulence may ap-

pear to behave as though they obey Taylor’s frozen flow hypothesis

and exhibit a distinct non-decaying periodicity with time delay due

to an insufficient time record or streamwise lengths (Wang et al.

(2020)). The modified method of Del Alamo & Jiménez (2009)
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is also numerically expensive as it requires the co-spectra of non-

linear terms with velocity. In this paper we consider several issues

bearing upon the definition and interpretation of the convection

velocity. Firstly, what is the effect of scale. Do large-scales of

motion travel faster or slower than small scales? Secondly, how is

the convection velocity affected by Reynolds number and pipewall

oscillation? Lastly, how are the length-scale of the spatial corre-

lation and the time-scale of the temporal correlation related to the

convection velocity? This last question leads to a new method of

approximating the convective velocity by the ratio of the spatial

separation at which the spatial correlation function first crossed

zero, ∆x0, to the temporal delay at which the time correlation first

crosses zero, ∆t0.

Method
The results presented are gathered from Direct Numerical

Simulations of a turbulent pipe flow at three Reynolds numbers:

Reτ = 170,360 and 720. The simulation is carried out using a

highly scalable code Nek5000 (Deville & Mund (2002); Fischer

(1997)). The domain of the flow is a locally structured, glob-

ally unstructured Cartesian grid. The wall shear stress τw is kept

fixed using a constant forcing term in the streamwise direction

fx = 2τw/ρR (R is the radius of the pipe). Spanwise wall oscilla-

tions are introduced to achieve drag reduction. Wall oscillations

are modeled as a velocity boundary condition, which is sinusoidal

in time and invariable in space.

The following terms scale the primitive variables. Ubulk

is the bulk velocity, which, coupled with the pipe diameter D

and viscosity ν describes the bulk Reynolds number of the flow,

Rebulk = UbulkD
ν . The pipe length is fixed at L = 24R to encour-

age structural decorrelation of very large scales in the streamwise

direction (Kim & Adrian (1999)). The selected oscillation param-

eters are kept fixed in the inner units as w+
wall = 10 and T+

wall = 100.

These values were selected from the available literature (Quadrio

& Ricco (2004)). The result of drag reduction under the constant

forcing term allows the mean flow rate to increase.

Simulations were run for 10000 ν/τw, and data is collected

every 3.125ν/τw to allow for well resolved temporally averaged

statistics and correlations. Results are interpolated using spec-

trally accurate interpolation routines (Merrill et al. (2016)) to a

grid uniformly distributed in streamwise and azimuthal directions

and that uses Gauss-Legendre-Lobatto nodes in the radial direc-

tion. High performance MPI libraries for Python (Otten & Min

(2016)) are used to post-process and plot the data. A Hanning

window was applied to the time record of velocity fluctuations.

Record lengths were varied to achieve a total record length of

Trec ≈
5L

Ubulk
. A sliding window average of width

∆TUbulk
R

= 4 was

applied to zero spatial separation time delay correlation function

and width ∆X
R

= 6 was applied to the zero time delay correlation

function to filter out high frequency oscillation which resulted in

spurious early time/space zero crossing.

Results
Streamwise-temporal correlations

Contours of the space-time auto-correlation coefficients of

the streamwise velocity, ui are presented in Figure 1 for for a sin-

gle, representative wall-normal location y+ = 110. This location

is chosen to represent the region of the outer-layer that is above

the logarithmic layer. The solid black lines indicate zero corre-

lation, and the gray regions correspond to correlation coefficients

between 0-7.5% (nominally ’low’ correlation). Dark red denotes

the region of nominally ’high’ correlation (90-100%). Streamwise

periodicity of the velocity field causes the correlation coefficients

to be periodic in ∆x, and the use of Fourier transforms to represent

the velocity in time causes the correlation coefficients to also be

periodic in ∆t. We see that the temporal coherence of the veloc-

ity in a frame moving with the convective velocity is greater than

the flow through-time, 24R/Ubulk, leading to regions of weak, but

non-zero correlation longer than the pipe length. The effect be-

comes greater with increasing Reynolds number producing weak

correlations as long as 48R at Re=720 in the non-oscillating pipe.

The coherence length and time are more than doubled when the

wall is oscillated to achieve drag reduction.(Compare Figure 1(a)

and 1(b).) Clearly, L=24R is insufficient to render the periodic

inflow/outflow condition benign. hen running simulations of tur-

bulent flows with drag reductions, researchers should take care

to understand that what is considered a sufficiently long domain

for standard turbulence may be too short for drag reduction. The

space-time auto-correlations for radial velocity are significantly

less converged than the corresponding auto-correlations for the

streamwise velocity. Wall oscillations impart a resonance in the

temporal separation curves most easly seen in Figure 1. The same

is apparent for the radial fluctuation correlation. For comparison,

the streamwise-temporal auto-correlations of radial velocity are

presented in Figure 3. The correlations of radial velocity are sig-

nificantly more noisey than those of the streamwise velocity.

Convective velocities
The black dotted line passing through the high correlation

region shows a line with the slope equal to the convective ve-

locity given by the method of Wills (1964), defined below in the

Equation (2). Since the method of Wills involves the behavior of

the correlation function at small separations, it is dominated by

the contributions of the small scales. On the other hand, the low

correlation region corresponds to large-scale structures, which are

known to influence the log-layer turbulence (Hutchins & Marusic

(2007); Guala et al. (2006)). One sees that the slope of the dashed

line is greater than the slope of the zero contour line, indicating

small scales moving faster than large scales. In the current paper,

two methods for calculating convective velocity are presented and

compared.

Method of Wills. The first method is the classical method of

calculating convective velocity (Wills (1964)), which defines it as

the slope of the line that passes through the location of the maxi-

mum correlation of the streamwise-temporal correlation function.

This is found by finding ∆ t through a process of a linear regression

of the points (∆x,∆ t,r) for each value of streamwise separation ∆x

and wall-normal location r as

∂ρuiui
(∆x,∆ t,r)

∂∆ t
|∆xi

= 0. (2)

From the equation 2 a set of (∆xi,∆ti) where the correlation is

maximized is gathered. Assuming a linear fit a linear least squares

algorithm can be applied with the slope cuiui
= a1.

[∆xi] = [a0,a1]
⊺[1,∆ti] (3)

Method of Zeroes. In the second method, which is a new

method that we propose (referred to as the method of “zero match-

ing”), we approximate the convection velocity through the ratio of

the length scale (Ix) in the streamwise direction to the temporal

scale (It ), where the convective velocity ⟨cuiui
⟩θ is defined as

⟨cuiui
⟩θ (r) =

Ix(r)

It(r)
=

∆x
∣

∣ρuiui
(∆x,∆ t = 0) = 0

∆t
∣

∣ρuiui
(∆x = 0,∆ t) = 0

(4)

In Equation (4), the streamwise length scale Ix(r) is defined

as the distance to the first zero crossing of the streamwise corre-

lation function at zero time delay, and the temporal scale It(r) is

defined as the distance to the first zero crossing of the temporal

auto-correlation function at zero spatial separation. A cubic spline
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interpolation with bisection is used to determine the numerical ap-

proximation of the first zero crossing. Figure 2 presents convec-

tive velocities obtained from Equation (2) and Equation (4) for

streamwise fluctuations, and Figure 4 presents the corresponding

data for radial fluctuations. Observations regarding drag reduction

show that for the lower Reynolds numbers, convective velocities

are significantly increased with respect to the bulk mean velocity.

Conclusions
The convective velocity profile calculated with the method of

zero matching (Equation (4)) shows a reasonable agreement with

the classical method. Near the centerline of the pipe the convec-

tive velocity tends towards the centerline velocity. Drag reduc-

tion shows a tendency to increase the convective velocity with re-

spect to the bulk mean velocity for streamwise fluctuations. This

is shown both using Method 1 and Method 2. This shows that the

method presented is consistent with the classical method. Some

spurious spikes in Method 2, especially for Reτ = 360, are at-

tributed to a difficulty to reliably converge on the first zero cross-

ing for a correlation function, which is oscillatory and crosses an

abscissa multiple times.

The Method of zeroes gives a reasonably good agreement

throughout the domain for the convective velocity related to

streamwise fluctuations. Radial fluctuations, however, exhibit a

distinct retardation. This is hypothesized to be due to what is ob-

served in isotropic turbulence where the velocity correlation func-

tion of a fluctuation transverse to the axis of correlation quickly

goes negative and positive again (De Karman & Howarth (1938))

due to continuity requirements. Thus the streamwise length scale

based on a first zero crossing is shorter.
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Figure 1: Space-time auto-correlation of streamwise velocity at y+ = 110 above the log-layer for Reτ = 170 (a),(b);

Reτ = 360 (c),(d); Reτ = 720 (e),(f). The left-hand plots give the results for flow with no pipe oscillation (zero drag-

reduction), and the right-hand plots present the results with oscillation (non-zero drag reduction). Black dashed lines

indicate the line of best fit associated with the convection velocity of Wills (2), and the black dotted line is from the

method of zeroes. (4). The solid black line corresponds to the zero-contour level.
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Figure 2: These figures show the approximation of mean convective velocities of the streamwise fluctuations. Black solid

lines are standard pipe flow and blue dashed are drag reduced. We compare the mean velocity profile (lines with no

markers), Method 1 (Method of Wills, triangles) and Method 2 (zero matching, squares).

4



12th International Symposium on Turbulence and Shear Flow Phenomena (TSFP12)

Osaka, Japan (Online), July 19–22, 2022

−40 −20 0 20 40
∆t⋆ = ∆tubulkR

−10

−5

0

5

10

∆
x
⋆
=
z/
R

ρurur(∆x⋆,∆t⋆, y+ = 110)

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

(a)

−50 −25 0 25 50
∆t⋆ = ∆tubulkR

−10

−5

0

5

10

∆
x
⋆
=
z/
R

ρurur(∆x⋆,∆t⋆, y+ = 110)

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

(b)

−40 −20 0 20 40
∆t⋆ = ∆tubulkR

−10

−5

0

5

10

∆
x
⋆
=
z/
R

ρurur(∆x⋆,∆t⋆, y+ = 110)

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

(c)

−50 −25 0 25 50
∆t⋆ = ∆tubulkR

−10

−5

0

5

10

∆
x
⋆
=
z/
R

ρurur(∆x⋆,∆t⋆, y+ = 110)

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

(d)

−50 −25 0 25 50
∆t⋆ = ∆tubulkR

−10

−5

0

5

10

∆
x
⋆
=
z/
R

ρurur(∆x⋆,∆t⋆, y+ = 110)

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

(e)

−50 −25 0 25 50
∆t⋆ = ∆tubulkR

−10

−5

0

5

10

∆
x
⋆
=
z/
R

ρurur(∆x⋆,∆t⋆, y+ = 110)

−0.9

−0.6

−0.3

0.0

0.3

0.6

0.9

(f)

Figure 3: Space-time auto-correlation coefficient of radial velocity at y+ = 110 for Reτ = 170 (a),(b), Reτ = 360 (c),(d),

Reτ = 720 (e),(f). The left-hand plots give the results for flow with no pipe oscillation (zero drag-reduction), and the

right-hand plots present the results with oscillation (non-zero drag reduction) Black dashed lines indicate the line of best

fit associated with the convection velocity of Wills (2), and the black dotted line is from the method of zeroes (4). The

solid black line corresponds to the zero-contour level. The noise in the correlations indicates the difficulty in resolving a

true convective velocity.
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Figure 4: These figures show the approximation of mean convective velocities of the radial fluctuations. Black solid lines

are standard pipe flow and blue dashed are drag reduced. We compare the mean velocity profile (lines with no markers),

Method 1 (Method of Wills, triangles) and Method 2 (zero matching, squares).
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