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ABSTRACT

It is well known that drag created by turbulent flow over a surface can be reduced by oscillating the surface in the direction transverse to the
mean flow. Efforts to understand the mechanism by which this occurs often apply the solution for laminar flow in the infinite half-space
over a planar, oscillating wall (Stokes’ second problem) through the viscous and buffer layer of the streamwise turbulent flow. This approach
is used for flows having planar surfaces, such as channel flow, and flows over curved surfaces, such as the interior of round pipes. However,
surface curvature introduces an additional effect that can be significant, especially when the viscous region is not small compared to the pipe
radius. The exact solutions for flow over transversely oscillating walls in a laminar pipe and planar channel flow are compared to the solution
of Stokes’ second problem to determine the effects of wall curvature and/or finite domain size. It is shown that a single non-dimensional
parameter, the Womersley number, can be used to scale these effects and that both effects become small at a Womersley number of greater
than about 6.51, which is the Womersley number based on the thickness of the Stokes’ layer of the classical solution.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0118838

NOMENCLATURE

Symbol

h Channel half height (m)
r Radial coordinate (m)
R Pipe radius (m)

Res Reynolds number (49)
t Time (s)
T Non-dimensional time (6)
uh Azimuthal velocity component (m/s)
us Wall friction velocity
w Spanwise velocity component (m/s)
w0 Wall velocity amplitude (m/s), (5) and (20)

Wcyl Non-dimensional azimuthal velocity (19)
W1 Non-dimensional spanwise velocity of HOW (11)
W2 Non-dimensional wall velocity of the APW (15)
y Wall normal coordinate (m)
a Stokes’ depth (m) (8)
n Non-dimensional wall normal coordinate (26), (28), and

(30)
� Kinematic viscosity (m2/s)

q Fluid density (kg/m3)
x Frequency of wall oscillation (rad/s)
Wo Womersely number (14)

I. INTRODUCTION

Oscillation of a plane wall transverse to a direction of turbulent
flow is known to reduce drag.1,2 Drag reduction up to 40% has been
reported from experiments3 and 35% from DNS.4 In laminar flows,
transverse wall oscillation creates a Stokes’ layer of positive and nega-
tive transverse velocities5,6 whose extent above the wall depends on the
square root of kinematic viscosity and frequency of wall oscillation. In
the wall bounded turbulent shear flow, in the x direction, the z-ward
transverse wall oscillation is thought to reduce drag most effectively
when the frequency is tuned to place the Stokes’ layer within the buffer
layer.7,8 Although the Stokes’ layer unquestionably influences the crea-
tion of turbulence near the wall, there is a disagreement over the phys-
ics of the process. Touber and Leschziner9 argue the Stokes’ layer
increases the size of the viscous sublayer and diminishes ejections and
sweeps. The Stokes’ layer is hypothesized to interact with the quasi-
streamwise vortices located in the buffer layer of the flow in such a
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way that it weakens these turbulent events known to be associated
with a drag increase. Ricco and Quadrio10 argue that the wall oscillations
increase the buffer layer thickness. They also provide an empirical
model for a drag reduction estimation depending on the wall oscillation
parameters in channel flows.10 Unarguably, investigating the physics of
turbulence modification by spanwise wall oscillation continues to be a
topic of interest. Since drag reduction in pipes was observed to be
greater than that of boundary layers or channels, we ask what makes the
Stokes’ layer in pipes different from that of plane walls.

To answer this question, we have considered three problems of
laminar viscous flows: (a) Stokes’ second problem,5 the classic solution
for flow in the half-space overlying a plane that is oscillating with
transverse wall velocity wjwall ¼ w0 sin ðxtÞ referred to as the half-
space oscillating wall (HOW), (b) laminar viscous flow in a space
bounded by two infinite plane walls that oscillate 180� out of phase,
referred to as anti-phase parallel walls (APW), and (c) flow in a cylin-
drical pipe wall that oscillates with velocity uhjwall ¼ w0 sin ðxtÞ
(OPW).11 The geometry of the pipe differs fundamentally from
Stokes’ planar flow (HOW) in two ways: the pipe domain is bounded
and its boundary is curved. To eliminate the effect of unbounded
domain, the second case was devised. The two-plane wall case (APW)
is analogous to Stokes’ second problem, but its velocity must be anti-
symmetric about the centerline. Qualitatively, the Stokes’ layer in (a),
(b), and (c) are similar.

The Stokes’ layer concept has been employed by many investi-
gators to understand how transverse oscillatory motion of the wall
modifies turbulence and accomplishes drag reduction.12,13 Different
types of transverse wall motions have also been studied in other con-
texts14–19 to understand the effect of problem parameters on a near
wall layer solution. However, the emphasis of this paper will be on
Stokes’ second problem on a half space and how it is modified by
problem geometry. A laminar Stokes’ second problem solution was
shown by Ricco and Quadrio10 to be a good approximation to a
phase-averaged spanwise velocity profile in a turbulent flow above
oscillated walls in a regime of drag reduction. While Stokes’ second
problem has been extended to more complicated geometries, including
flow between one oscillating and one stationary plate,20 flow in a half-
channel above an oscillating plate with a stress-free (Neumann) condi-
tion at the top boundary,21,22 and two-dimensional problems involving
touching semi-infinite plates, one oscillating and one stationary, in
both infinite21–23 and finite22 wall normal domains. Additionally, Song
and Rau11 recently explained the solution for Stokes’ second problem
in cylindrical geometry. While the derivation of solutions is not the
focus of the current paper, and we are more interested in analysis of
their differences, a solution between two plates oscillating out of phase
does not seem to be available in the previous literature, so we present
its derivation. Additionally, Song and Rau’s11 solution is complicated
by the inclusion of the effects of initial transients, and, for our pur-
poses, we are interested in fully developed time periodic flows; thus,
we present an alternative solution of a cylindrical problem following
the steps similar to the ones used in a derivation of the classical Stokes’
second problem using separation of variables.5

The paper is organized as follows. In Sec. III, we present the solu-
tions and, whenever applicable, their derivations for the three intro-
duced Stokes’ problems; in Sec. IV, we analyze the errors and discuss
the influence of a finite size domain and a curvature on the solution
differences; and in Sec. V, we draw conclusions.

II. SOLUTIONS TO STOKES’ SECOND PROBLEM
AND MODIFIED STOKES’ PROBLEMS
A. Half-space oscillating wall

In Cartesian coordinates, the incompressible Navier–Stokes
equations are given by the momentum and continuity equations as
follows:

D
Dt
~u ¼ �rpþ �r2~u; (1)

r �~u ¼ 0: (2)

The velocity is given by ~u ¼ ûi þ v̂j þ wk̂, where î; ĵ; and k̂ are the
unit vectors in the x, y, and z coordinates, respectively, p corresponds
to the pressure, and � represents the kinematic viscosity. Furthermore,
D/Dt denotes a material derivative, r is the gradient operator r
¼ @

@x î þ @
@y ĵ þ @

@z k̂, and r2 is the Laplacian operator r2 ¼ @2

@x2

þ @2

@y2 þ @2

@z2.

Classical Stokes’ second problem considers an infinite plate in the
y–z plane located at y¼ 0 under an infinite boundary of the fluid. The
wall oscillates in a spanwise (z) direction with a velocity w0 sin ðxtÞ,
where x is the frequency of the oscillations. Under these assumptions,
the governing equations of motion (1) and (2) in a laminar flow
reduce to

@w
@t
� � @

2w
@y2
¼ 0: (3)

The boundary conditions are specified as wðy ¼ 0; tÞ ¼ w0 sin ðxtÞ;
wðy!1; tÞ ¼ 0. Using the wall velocity amplitude w0, oscillation
frequency x, and viscosity � as the reference dimensional parameters,
a non-dimensional equation can be formed as

@W
@T
� @

2W
@Y2

¼ 0; (4)

W ¼ w
w0
; (5)

T ¼ xt; (6)

Y ¼ y
a
; (7)

a ¼
ffiffiffiffi
�

x

r
; (8)

with boundary conditions

WðY ¼ 0;TÞ ¼ sin Tð Þ; (9)

WðY !1;TÞ ¼ 0: (10)

The solution of (4) with (9) and (10) is5

W1ðY ;TÞ ¼ = exp ðiTÞ exp �
ffiffi
i
p

Y
� �n o

; (11)

where i ¼
ffiffiffiffiffiffi
�1
p

, and = indicates the imaginary part of the solution.

B. Anti-phase parallel walls

The APW problem is formulated as follows. Two infinitely
long parallel plates are located at y ¼ �h and y¼ h and are oscil-
lated out of phase, with velocities wjy¼�h ¼ w0 sin ðx; tÞ;
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wjy¼h ¼ �w0 sin ðx; tÞ, respectively. Using the adopted normaliza-
tion of Eqs. (5)–(8), (4), as previously, describes the governing
equation of motion for the fluid between the plates, while the
boundary conditions are given by

WðY ¼ �Wo;TÞ ¼ sin Tð Þ; (12)

WðY ¼ Wo;TÞ ¼ �sin Tð Þ: (13)

For a finite-size domain, we have introduced the parameter Wo,
denoted as the Stokes’ second problemWomersley number

Wo ¼ h=a ¼ h

ffiffiffiffi
x
�

r
: (14)

The solution to Eq. (4) with the boundary conditions (12) and (13)
can be written as follows, and the solution process can be found in
Appendix A,

W2ðY ;TÞ ¼ = �exp ðiTÞ sinh
ffiffi
i
p

Y
� �

sinh
ffiffi
i
p
Wo

� �
( )

: (15)

This solution returns a zero velocity at the centerline, Y¼ 0, as
expected.

C. Oscillating pipe wall

The incompressible Navier–Stokes equations in the cylindrical
coordinates are given by

@ux
@t
þ ur

@ux
@r
þ uh

r
@ux
@h
þ ux

@ux
@x
¼ � @p

@x
þ �r2ux; (16)

@ur
@t
þ ur

@ur
@r
þ uh

r
@ur
@h
þ ux

@ux
@x
� u2h

r
¼ � @p

@r
þ �r2ur; (17)

@uh

@t
þ ur

@uh

@r
þ uh

r
@uh

@h
þ ux

@uh

@x
þ uhur

r
¼ � 1

r
@p
@h
þ �r2uh; (18)

where fr; h; xg correspond to a radial, azimuthal, and longitudinal
directions, respectively, and fur ; uh; uxg denote the corresponding
velocity components. In the context of cylindrical coordinates, the
Laplacian operator,r2 is given asr2 ¼ 1

r
@
@r ðr @

@rÞ þ 1
r2

@
@h2
þ @2

@x2.
For the Stokes’ second problem in the cylindrical coordinates, the

fluid domain is inside a round pipe of a diameter D, and a pipe wall
oscillates with velocity w0 sin ðxtÞ in an azimuthal direction. Under
these assumptions, we can set ur ¼ ux ¼ 0 and @uh=@h ¼ 0.

The solution to the Stokes’ second problem in cylindrical coordi-
nates using Laplace transform that considers initial transients can be
found in the work of Song and Rau.11 However, in the current work,
we are primarily interested in fully developed time-periodic solutions
because these solutions are most representative of the data acquired by
researchers investigating drag reduction in fully developed pipe flows
with wall oscillations.3,24,25 An alternative derivation directly geared to
finding a time-periodic solution is presented in Appendix B, and such
solution is given as

WcylðR;TÞ ¼ = exp ðiTÞ J1
ffiffiffiffi
i3
p

R
� �

J1
ffiffiffiffi
i3
p
Wo

� �
( )

; (19)

where the non-dimensional variables are defined as

W ¼ uh

w0
; (20)

T ¼ xt; (21)

R ¼ r
a
; (22)

Wo ¼
D
2 a

; (23)

a ¼
ffiffiffiffi
�

x

r
; (24)

and J1 is the Bessel function of the first kind.

III. COMPARISON OF SOLUTIONS
A. Domain choice and rescaling of solutions

The objective of this paper is to characterize how well the two
Stokes’ second problem solutions based on Cartesian geometries
(HOW and APW) approximate a solution to the Stokes’ second prob-
lem in cylindrical coordinates (OPW). However, while doing so, we
face a problem that the two finite-domain solutions (OPW and AOW)
have a clearly defined length scale related to the finite domain size,
manifesting itself, in its normalized form, through the Womersley
number defined in Eqs. (14) and (23). However, the classical Stokes’
second problem defined in the infinite half-space, HOW, does not
have this length scale. In order to compare finite domain solutions
with an infinite domain solution, we need to artificially introduce such
a length scale into the HOW problem, which, effectively, will truncate
the comparison domain for the HOW solution. For comparison with
finite domain solutions, we choose to define this length scale to be
based on the sizes of the finite domains, which are h for the APW and
D=2 for the OPW, matched through the selection of the Womerseley
numberWo ¼ h=a ¼ D=ð2aÞ. We, therefore, define the domain size
for the infinite half-space problem as d ¼ Wo a, so that all three solu-
tions are mapped to the same domain n 2 ½0;Wo� in the normalized
wall-normal coordinate n, where n represents the normalized distance
from the wall defined below for the three problems of interest.

HOW. For the HOW solution, n ¼ Y , and the infinite-domain
HOW solution of Eq. (11) mapped into the finite domain takes the fol-
lowing form:

W1ðn;TÞ ¼ = exp ðiTÞ exp �
ffiffi
i
p

n
� �n o

; (25)

0 � n � d
a
; d ¼ Wo a: (26)

APW. For the APW, we define n ¼ Y �Wo, and the solution (15) is
written as

W2ðn;TÞ ¼ = exp ðiTÞ sinh
ffiffi
i
p
ðWo � nÞ

� �
sinh

ffiffi
i
p
Wo

� �
( )

; (27)

0 � n � h
a
: (28)

OPW. To define a normalized distance from the wall for the pipe
geometry, we set n ¼ Wo � R, which transforms Eq. (19) into

Wcylðn;TÞ ¼ = exp ðiTÞ J1ð
ffiffiffiffi
i3
p
ðWo � nÞÞ

J1
ffiffiffiffi
i3
p
Wo

� �
( )

; (29)
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0 � n � D
2a
: (30)

To further illustrate the effect of the HOW domain truncation on
the solution comparison, we plot in Fig. 1 the normalized distance to
the wall-normal location where the velocity in the Stokes’ layer decays
to 1% of its value at the wall for the three problems, defined as

n1% ¼ n : Wiðn;T ¼ p=2Þ ¼ 0:01; (31)

where i ¼ 1; 2; cyl, corresponding to HOW, APW, and OPW solu-
tions, respectively. For the HOW problem, such distance is indepen-
dent of the Womersely number and is equal to the normalized Stokes’
layer thickness, where Stokes’ layer thickness, dSl , can be computed
from the analytical solution (11) to the standard Stokes’ second prob-
lem as5

dSl ¼ 4:6
ffiffiffiffiffiffiffiffiffiffiffi
2�=x

p
¼ 4:6

ffiffiffi
2
p

a: (32)

We note that the Stokes’ layer thickness in Eq. (32) is different
from the Stokes’ penetration depth dSp ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2 �=x

p
commonly used in

the definition of the Stokes’ problem,26,27 with the relationship

dSl ¼ 4:6 dSp: (33)

We can further define a Womersley number based on Stokes’ layer
thickness as

WSl
o ¼ dSl

ffiffiffiffi
x
�

r
¼ 4:6

ffiffiffi
2
p
� 6:51: (34)

For the APW and OPW problems, n1% roughly scales with the
domain size for Womersley numbersWo �WSl

o , since in these cases

the distance to the center of the domain, where velocity drops to zero
due to geometrical constraints, is smaller than the corresponding dis-
tance dSl imposed by the nature of the Stokes’ solution. After Wo

reachesWSl
o , this distance is unchanged for the three problems and is

equivalent to dSl , as seen from Fig. 1. Therefore, truncating the HOW
domain to d ¼ Wo a leads to the fact that, for low Womersley num-
bers, the velocity value for the HOW solution at the top domain
boundary would be higher than 1% of the wall velocity, while it drops
to zero in the corresponding APW and OPW domains, contributing
to the solution mismatch as discussed in the next section. This is a
consequence of the comparison of solutions in unbounded and finite-
size domains.

B. Error definition

To define the error, we consider cylindrical solution (OPW) as
the baseline solution, from which the errors are calculated as

eiðn;TÞ ¼Wiðn;TÞ �Wcylðn;TÞ; (35)

for i¼ 1, 2, where i¼ 1 corresponds to a standard Stokes’ problem
solution (HOW) given by Eq. (25) and i¼ 2 corresponds to a finite
domain Cartesian solution (APW) given by Eq. (27).

Since the errors are both space- and time-dependent, we define
the L2 error as

eL2i ðWoÞ ¼
1
Wo

ðWo

0

1
2p

ð2p
0
e2i ðn;TÞdTdn

 !1=2

: (36)

Due to a complexity of an analytical integration of the squared error
profiles, the integral in Eq. (36) is evaluated numerically using N¼ 64
equidistant points in time and M¼ 256 Gauss–Legendre–Lobatto
quadrature points28 in space.

C. Dependence of error on Womersley number

Figure 2 shows the error profiles as a function of the Womersley
number. As expected, for low Womersley number, the error between
the standard Stokes’ second problem (HOW) solution and the cylin-
drical (OPW) solution is large; however, it decreases with the increase
in Womersley number. Unexpectedly, we observe that the error
between the two-plate solution (APW) and the cylindrical solution
(OPW) agrees well at low Womersley number, then increases to a
maximum at Wo � 3:26. For higher Wo, the two error profiles col-
lapse. It is worth noting that the error between the cylindrical solution
and the finite-domain two-plate solution is always smaller than the
error between the cylindrical and the infinite domain Stokes’ solution,
as expected.

D. Errors and velocity profiles at different flow regimes

We now examine the behavior of errors and velocity profiles at
different flow regimes, in order to further understand the reasons con-
tributing to the differences between the solutions.

Based on Fig. 2, we can identify three distinct flow regimes: (1)
low Womersley number, W0 � 0:1; (2) intermediate Womersley
number, 0:1�Wo �WSl

o (the e2 error exhibits a maximum in this
regime atWo � 3:26); and (3) high Womersley number,Wo �WSl

o .
We will investigate each of these three flow regimes carefully in this

FIG. 1. Normalized distance to the wall-normal location, where the velocity in the
Stokes’ layer decays to 1% of its wall value for the three problems, n1%, vs Wo

number. For the HOW problem, such distance is independent ofWo and equals to
the Stokes’ layer thickness dSl=a ¼ 4:6

ffiffiffi
2
p
� 6:51. For the APW and OPW prob-

lems, this distance first increases with the domain size (or Wo) until it reaches
dSl=a. The green vertical line indicates a Wo ¼ 3:26 where the error between
OPW and APW is maximized (Fig. 2), while the red vertical line indicates the loca-
tion ofWo ¼ 4:6

ffiffiffi
2
p

.
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section. Note that for low and high Womersley numbers, an asymp-
totic expansion of the solutions can be utilized to explain the error
behavior, but not for the intermediateWo regime.

To examine the dependence of the errors on a spatial location
within the flow, in this section, we will look at a temporally averaged
but spatially varying L2 error defined as

eL2i ðWo; nÞ ¼
1
2p

ð2p
0
e2i ðn;TÞdT: (37)

1. Low Womersley number flow

The velocity profiles for a low Womersley number flow are illus-
trated in Fig. 3 for Wo ¼ 0:01. To understand the behavior of errors
and velocity profiles at a low Womersley number, we consider an
asymptotic expansion of the three solutions at a limitWo ! 0.

HOW. For the standard Stokes’ second problem, a Taylor expan-
sion of the Eq. (25) for the region near the wall takes the following
form:

W1ðn;TÞ � = exp ðiTÞ 1�
ffiffi
i
p

n
� �n o

; n! 0: (38)

Note the absence of the Womersley number in this expansion.
APW. For the APW solution (27), a Taylor series expansion of a

hyperbolic sine function can be used to derive a lowWo approxima-
tion as

W2ðn;TÞ � = exp ðiTÞWo � n
Wo

� �
; Wo ! 0; n! 0: (39)

OPW. For a small value of its argument, there exists an asymp-
totic approximation for a Bessel function of the first kind shown by
Abramowitz and Stegun29

J1ðzÞ �
z
2
; z ! 0: (40)

Since the argument of the Bessel function in the OPW solution
given by Eq. (29), z ¼

ffiffiffiffi
i3
p
ðWo � nÞ, varies between 0 and

ffiffiffiffi
i3
p
Wo,

then, for sufficiently small Womersley numbers, the asymptotic form
of the solution to a cylindrical Stokes’ problem is obtained as

Wcylðn;TÞ � = exp ðiTÞWo � n
Wo

� �
; Wo ! 0; n! 0: (41)

The asymptotic solutions (39) and (41) are identical, which explains
an essentially vanishing error for e2 in Fig. 2 asWo ! 0, and low val-
ues of e2 overall in this low Wo number regime. Furthermore, the
asymptotic solutions are linear in n, conforming to the boundary con-
ditions at the wall at n¼ 0 and decaying to zero at the centerline given
by n ¼ Wo, which is reflected in the corresponding velocity plots in
Figs. 3(a) and 3(b).

As far as the solution of the standard Stokes’ second problem is
concerned, its asymptotic expansion is different. The most significant
difference is the absence of Wo in the expansion, which prevents the
solution from dropping to zero at n ¼ Wo, and, in fact, accounts for
an essentially flat profile independent of n for small n, which can be
observed from Figs. 3(a) and 3(b).

Linear behavior of solutions at small Womersley number can
also be explained from a physical point of view. For a cylindrical
domain, for such a small radius, the velocity profile at each time
instance corresponds to that of a pure solid-body rotation with
uh / r. Likewise, the finite domain Cartesian solution behaves like a
planar Couette flow at any given phase. This situation corresponds to
almost an instantaneous adjustment of the flow to any given wall
velocity.

Physically this occurs when the viscous timescale is much shorter
than the oscillation period, given by the following relation:

d2

�
	 Tosc ! x

d2

�

� �
	 2p!Wo 	

ffiffiffiffiffi
2p
p

: (42)

This represents the state of the flow when the momentum trans-
fer from the wall happens much faster than the oscillation period com-
pletes. This can occur when either the domain is small, the viscosity is
large, or the oscillation period is large.

2. Intermediate Womersley number flow: Region
of maximum e2 error

In this section, we consider a regime of intermediate Womersley
numbers 0:1�Wo �WSl

o , where e2 error exhibits its maximum at
Wo � 3:26. This Womersley number is sufficiently large that the
asymptotic expansions developed in Sec. II are no longer valid, and
sufficiently small that the expansions developed in Sec. IV for very
large Womersely numbers are not valid as well.

The velocity profiles for the three considered Stokes’ problems at
Wo ¼ 3:26 are presented in Figs. 4(a) and 4(b). While the classical
Stokes’ second problem solution (HOW) deviates from both OPW
and APW, the two finite domain solutions (cylindrical – OPW and
Cartesian – APW) are no longer in perfect agreement, despite the
match of the boundary conditions, due to the curvature effects. Since
the domain thickness does not contribute to the error between the

FIG. 2. L2 error values vs Womersley number. Blues dashed line is e1 comparing
OPW and HOW solutions, and black dotted line is e2 comparing OPW and APW
solutions. The green vertical line indicates a Wo ¼ 3:26 where the error between
OPW and APW is maximized, while the red vertical line indicates the location of
Wo ¼ 4:6

ffiffiffi
2
p

. The inset shows the difference between e1 and e2 multiplied by the
square ofWo.
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APW and OPW solutions whose domain sizes (wall to wall cross-
sectional distances) match, the curvature effects are clearly maximized
at this Womersley number.

3. High Womersley number flow

Finally, we consider the region of a high Womersley number
flow, Wo �WSl

o . The significance of WSl
o defined in Eq. (34) is that

above this Womersley number, the finite domain effects should be
diminished, since for this layer thickness, the Stokes’ layer velocity has
decayed sufficiently, so that the finite and infinite domain problems
might be a good approximation of each other.

To understand the behavior of solutions at highWo regime, we,
again, consider, an asymptotic expansion of the corresponding solu-
tions, but atWo !1.

HOW. The HOW solution given by Eq. (25) does not contain
Wo, so it is already in the form amenable to analysis atWo !1, i.e.,
we can conclude that

W1ðn;TÞ � = exp ðiTÞ exp �
ffiffi
i
p

n
� �n o

; Wo !1: (43)

APW. Using the approximation sinh�1
ffiffi
i
p
Wo

� �
� 2 exp �

ffiffi
i
p
Wo

� �
;Wo !1, one can show that an anti-phase paral-

lel walls solution given by Eq. (27) has an asymptotic expansion

W2ðn;TÞ � = exp ðiTÞ exp �
ffiffi
i
p

n
� �n o

; Wo !1; (44)

which coincides with the standard Stokes’ second problem solution
asymptotics given by Eq. (43).

OPW. To consider the cylindrical (OPW) solution asWo !1,
we note that, for large values of z, an asymptotic form of the Bessel
function exists as

FIG. 3. (a) and (b) Velocity profiles at two selected phases at a low Womersley number Wo ¼ 0:01. Black solid line, cylindrical solution (OPW); blue dashed line, standard
Stokes’ second problem solution (HOW); red dotted line, finite domain Cartesian solution (APW). Black solid line and red dotted line lie on top of each other. Note at maximum
wall velocity the HOW solution is a near vertical line for n 2 ½0;Wo� in (a).

FIG. 4. Velocity profiles at two selected phases, (a) T ¼ p
2 and (b) T ¼ p, at a region of maximum e2 error Wo ¼ 3:26. Black solid line, cylindrical solution (OPW); blue

dashed line, standard Stokes’ second problem solution (HOW); red dotted line, finite domain Cartesian solution (APW).
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J1ðzÞ �
ffiffiffiffiffi
2
pz

r
cos z � 3p

4

� �
; jzj 
 3

4
: (45)

With some trigonometric manipulation, Eq. (45) can be rewritten as

J1ðzÞ �
ffiffiffiffiffi
2
pz

r
�i sinh i z � p

4

� �� �
; jzj 
 3

4
;

�
(46)

or, alternatively,

J�11

ffiffiffiffi
i3
p
Wo

� �
�

ffiffiffiffiffi
pz
2

r
2 i

ffiffiffiffiffiffiffi
Wo

p
exp �

ffiffi
i
p
Wo �

p
4
i

� �
; Wo 


3
4
;

(47)

from where we can write the asymptotic expression

Wcylðn;TÞ � = exp ðiTÞ 1þ 1
2

n
Wo

� �
exp �

ffiffi
i
p

n
� �� �

; Wo !1:

(48)

While it is seen that an asymptotic decay of a cylindrical solution
(OPW) as Wo !1 is the same as of the two Cartesian solutions
(HOW and APW), the decay is slower at high but not infinite
Womersley numbers due to a multiplication by ð1þ n=ð2WoÞÞ > 1.

These effects are illustrated in Figs. 5 and 6, where the velocity
profiles are plotted forWSl

o ¼ 6:51 and a relatively highWo ¼ 45:12.
It is seen that at a Womersley number based on the Stokes’ layer thick-
ness, both Cartesian solutions are aligned, as expected, while a cylin-
drical solution deviates from it slightly due to a different asymptotic
behavior at this high-intermediate regime (see Fig. 5). However, for

FIG. 5. (a) and (b) Velocity profiles at two selected phases atWo ¼ WSl
o ¼ 6:51. Black solid line, cylindrical solution (OPW); blue dashed line, standard Stokes’ second prob-

lem solution (HOW); red dotted line, finite domain Cartesian solution (APW).

FIG. 6. (a) and (b) Velocity profiles at two selected phases at a high Womersley numberWo ¼ 45:12. Black solid line, cylindrical solution (OPW); blue dashed line, standard
Stokes’ second problem solution (HOW); red dotted line, finite domain Cartesian solution (APW).
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Wo ¼ 45:12 in Fig. 6, all three velocity profiles are in perfect agree-
ment. Likewise, errors e1 and e2 in the regimeWo �WSl

o are similar,
since the profiles W1ðn;TÞ and W2ðn;TÞ essentially coincide. Both
errors are getting smaller with the increase in Womersley number,
since the cylindrical solution gets closer and closer to the two
Cartesian solutions.

E. Discussion of the effects of curvature vs domain
thickness

Two distinct effects contribute to the difference between the
cylindrical Stokes’ second problem solution (OPW) and the standard
Stokes’ second problem solution (HOW): the effect of curvature and
the effect of the domain thickness. To help separate the influence of
these effects, a comparison of a cylindrical solution (OPW) to a finite
size Cartesian domain solution (APW) was considered, because it
eliminates the domain thickness effects and only leaves the curvature
effects. From this comparison (manifested in the error e2), it is seen
that the errors due to curvature are very small at low Wo numbers,
where the viscous effects are dominant, they increase reaching the
maximum aroundWo � 3:26 and then decrease at highWo numbers
due to an effective reduction in curvature. Finite domain effects,
observable in the e1 error between the cylindrical (OPW) solution and
the standard Stokes’ (HOW) solution, are the largest at lowWo, where
the different near-wall behavior of the two solutions constitutes the
major component of the e1 error and then monotonically decrease. In
the regime of 0 <Wo � 3:26, while the error due to finite domain
decreases, the error due to curvature increases, resulting in a low
decrease rate of the overall e1 error (between OPW and HOW) with
Wo. WhenWo reachesWSl

o ¼ 4:6
ffiffiffi
2
p
� 6:51, the finite domain error

is sufficiently small and can be neglected, while the curvature error
decreases, resulting in a collapse of the e1 and e2 errors, and a faster
rate of decrease in both errors compared to the decrease in e1 error in
a low to intermediateWo regime. Finally, since the e1 error contains a
combined contribution from both the finite domain error and the cur-
vature error, the difference between the cylindrical (OPW) and the
standard Stokes’ (HOW) solution is always larger than the difference
between cylindrical (OPW) and a finite size domain Cartesian (APW)
solution.

IV. REMARKS ON APPLICATION TO TURBULENT DRAG
REDUCTION

We are now interested to see how the above-mentioned findings
regarding the difference in velocity profiles between the Stokes’ prob-
lem solutions effect the conclusions that can be made during investiga-
tion of turbulent drag reduction in pipe and channel flows. In a
turbulent regime, the flow is typically characterized by its friction
Reynolds number,

Res ¼ ðusdhÞ=�; (49)

where us is the friction velocity, and dh equals to h or D=2 is the outer
length scale of the flow.30 We now define the inner length and time
scales ds ¼ �=us; ts ¼ �=u2s ; which lead to the definition of the wall
units as

yþ ¼ y
ds
; Tþ ¼ T

ts
: (50)

From these definitions, we can scale the spanwise velocity profile
in terms of the streamwise turbulent scalings. Namely, we can show
that Stokes’ thickness a expressed in terms of wall units is

a ¼
ffiffiffiffi
�

x

r
¼ �

us

ffiffiffiffiffiffiffiffiffiffi
1

2pf þ

s
; (51)

where f þ ¼ x ts=ð2pÞ is the non-dimensional frequency of wall oscil-
lations expressed in wall units. We can then write the Womersley
number defined in Eq. (14) in terms of the wall units as

Wo ¼ Res
ffiffiffiffiffiffiffiffiffiffi
2pf þ

p
: (52)

AtWo � WSl
o ¼ 6:51, the L2 error value normalized by the wall

velocity amplitude between the classical Stokes’ second problem and
the cylindrical solution is shown to be on the order of 10�3 in Fig. 2,
and even smaller if the infinite and finite domain Cartesian solutions
are compared, which is deemed sufficient for the classical Stokes’ sec-
ond problem (HOW) to be a reasonable approximation to the Stokes’
solution obtained either in a pipe (OPW) or a channel (APW) geome-
try. Applying a criterionWo >WSl

o , we find that

Res
ffiffiffiffiffiffiffiffiffiffi
2pf þ

p
>WSl

o ; (53)

which can be rearranged as

Res > ReSls ; (54)

with

ReSls ¼
WSl

offiffiffiffiffiffiffiffiffiffi
2pf þ

p : (55)

Substituting WSl
o ¼ 4:6

ffiffiffi
2
p

and f þ ¼ 0:01 as the experimentally and
numerically measured optimum frequency of wall oscillation for tur-
bulent drag reduction4,31 into Eq. (54), we find that ReSls ¼ 25:95, and
the following criterion on the Reynolds number holds:

Res > 25:95; (56)

for which the classical Stokes’ second problem solution can be applied
to a cylindrical or a finite domain Cartesian geometry with a relative
error of less than 10�3 or 0.1%. Since the flow in a pipe or a channel
only becomes turbulent when Res � 150, see, for example, Ref. 30, for
the regime, where the turbulent drag reduction is of interest, the crite-
rion (56) is naturally satisfied for all turbulent flows with f þ ¼ 0:01.
This justifies an application of a standard Stokes’ second problem solu-
tion to the phase-averaged azimuthal velocity profiles with a spanwise
wall oscillation with traditional, relatively high, frequencies
(f þ � 0:01) proposed for drag reduction,4,25,31 in a turbulent pipe or
channel flow without incurring significant errors.

However, Marusic et al.32 showed that drag reduction could be
achieved more efficiently by modifying the frequency of oscillation to
modulate large scales of motion in the outer layer. With this new idea,
the frequencies of oscillation as low as f þ ¼ 10�3 were successfully
tried. For these low frequencies, the criterion of Eq. (56) would
increase threefold, and, for even lower frequencies, it could happen
that the Womersley number of the flow would become low enough
that the classical Stokes’ layer solution would no longer fall within the
regime of validity for a solution comparison between the finite and
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infinite domains, and researchers need to be cautioned of this
possibility.

Another word of caution is that a laminar solution to the Stokes’
second problem can only be applied to drag reduction studies, when
the Stokes’ layer stays laminar. A laminar-to-turbulent transition of
the Stokes’ layer was measured to occur at a Reynolds number of
ReSpd ¼ ðwod

SpÞ=�� 550 based on the wall oscillation amplitude and
the Stokes’ penetration depth.27,33,34 Given the relationship (33)
between the Stokes’ penetration depth and the Stokes’ layer thickness,
we can rewrite this criterion in terms of the Stokes’ layer thickness
conventionally used in this paper: ReSld ¼ ðwod

SlÞ=�� 2530. It can be
shown that RedSl can be expressed as

ReSld ¼ wþ0 Re
Sl
s ; (57)

with ReSls as defined above in Eq. (55). Given that WSl
o is precisely

defined by (34), and the critical ReSld come from the measurements,27,33

we can write the following criterion for the laminar-to-turbulent tran-
sition in an oscillatory Stokes’ layer:

wþoffiffiffiffiffi
f þ

p �

ffiffiffiffiffi
2p
p

� 2530
WSl

o

� 975: (58)

Using f þ ¼ 0:01 as before, and wþo ¼ 10 as the wall oscillation ampli-
tude located within an optimum range for drag reduction as reported
in the previous studies,4,31 we can see that wþo =

ffiffiffiffiffi
f þ

p
� 100 in a wall

oscillation regime with relatively high frequencies, so that the criterion
(58) is satisfied, and the Stokes’ layer stays laminar.24,25,31 However,
with low frequencies,32 and depending on the wall oscillation ampli-
tude, the ratio wþo =

ffiffiffiffiffi
f þ

p
could fall in the range of the criterion of (58),

the Stokes’ layer would become turbulent and completely different
solution properties in the Stokes’ layer could be achieved.

V. CONCLUSION

We have considered three laminar solutions to the Stokes’ second
problem. We have shown that a single non-dimensional parameter,
the Womersley number, completely defines the problem with respect
to the domain size and the wall oscillation frequency.We have demon-
strated an existence of three distinct regimes of Womersley numbers
as related to the differences between the cylindrical (OPW) and
Cartesian (HOW, APW) Stokes’ problem solutions. (1) A small
Womersley number regime characterized byWo � 0:1, where the two
finite-domain solutions are asymptotically equivalent, and the infinite-
domain standard Stokes’ solution deviates significantly due to the
finite-domain effects. The fact that cylindrical and flat-plate solutions
are equivalent in this regime can be physically explained by the exis-
tence of a linear velocity profile in both cases established due to a
diminutive ratio of the viscous timescale to the oscillation period
occurring when Wo 	

ffiffiffiffiffi
2p
p

. In this regime, the curvature errors are
small, and the finite-domain errors are large. (2) A large Womersley
number regime defined asWo �WSl

o ¼ 4:6
ffiffiffi
2
p

, where two Cartesian
solutions are asymptotically equivalent, and the cylindrical solution
deviates slightly, with the difference being small and rapidly decreasing
with Wo. In this regime, the finite-domain error is negligible, while
the curvature error exists but is small and further drops withWo. (3)
In the intermediate Wo regime, both errors are significant, and all
three solutions deviate from each other.

Based on the error analysis, we show that for a classical Stokes’
second problem solution to serve as a good approximation for an
oscillating Stokes’ layer in a pipe or a channel, the Womersley number
of the flow in a pipe or a channel must be greater than the Womersley
number based on the Stokes’ layer thicknessWo >WSl

o ¼ 4:6
ffiffiffi
2
p

. In
fact, in this regime, the L2 error between the cylindrical and the classi-
cal Stokes’ solution is guaranteed to be less than 0.1% of the wall
oscillation amplitude, and even smaller when the classical and the
finite-width Cartesian solutions are compared. When the Womersley
criterion is recast in terms of wall units relevant in the studies of turbu-
lent drag reduction with a spanwise-oscillating wall, and the non-
dimensional frequency of f þ ¼ 0:01 is used as a typical oscillation
frequency in turbulent drag reduction studies,25,31 we obtain a criteria
that Res > 25:95 for the L2 error between all three solutions to fall
below 0.1%. Since the longitudinal boundary layer flow is turbulent
only at Res � 150, the current work confirms that the application of a
classical Stokes’ layer solution to study turbulent drag reduction in
pipes and channels at these, relatively high, oscillation frequencies, is
appropriate. Furthermore, using the information from the previous
experimental and computational work,27,33–35 we show that in the
regime of interest to turbulent drag reduction with the spanwise wall
oscillation at f þ ¼ 0:01, the Stokes’ layer remains laminar. At lower
wall oscillation frequencies,32 both the similarity criterion between the
Stokes’ solutions and the laminar-to-turbulent transition criterion of
the Stokes’ layer need to be reevaluated, as lower oscillation frequen-
cies effectively lower the Womersley number of the flow, conducive
both to larger solution differences, and to earlier transitions in the
Stokes’ layer. The application of wall oscillations can be employed to
reduce drag in pipelines, which would lower the cost of pumping and
lead to energy savings.
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APPENDIX A: DERIVATION OF THE ANTI-PHASE
PARALLEL WALL SOLUTION

Here, we derive a solution to a modified Stokes’ second prob-
lem in a finite-height domain bounded by the infinitely long plates
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located at y ¼ �h and y¼ h, whose solution did not yet appear in
the literature. As stated in Sec. II B, in its non-dimensional form,
this problem is governed by Eq. (4) with boundary conditions (12)
and (13).

We are looking for a fully developed periodic in time solution
and thus neglect initial transients. A separation of variables tech-
nique applied to this situation yields

WðY ;TÞ ¼ = exp ðiTÞFðYÞ
	 


: (A1)

Substituting the form of the solution given by Eq. (A1) to the gov-
erning equation (4) we obtain the following differential equation:

iFðYÞ � d2FðYÞ
dY2

¼ 0: (A2)

This equation has a complex exponential solution given by

FðYÞ ¼ c1 exp
ffiffi
i
p

Y
� �

þ c2 exp �
ffiffi
i
p

Y
� �

: (A3)

From the boundary conditions, we obtain a set of linear equations
for c1 and c2;

c1 exp �
ffiffi
i
p
Wo

� �
þ c2 exp

ffiffi
i
p
Wo

� �
¼ 1; (A4)

c1 exp
ffiffi
i
p
Wo

� �
þ c2 exp �

ffiffi
i
p
Wo

� �
¼ �1: (A5)

Solving for c1, c2 from (A4) and (A5), we arrive at the form of the
solution given by

WðY ;TÞ ¼ = �exp ðiTÞ sinh
ffiffi
i
p

Y
� �

sinh
ffiffi
i
p
Wo

� �
( )

: (A6)

APPENDIX B: DERIVATION OF A TIME-PERIODIC
SOLUTION TO OSCILLATING PIPE WALL PROBLEM

In cylindrical coordinates, the equations of motion for the
Stokes’ second problem reduce to

@W
@T
� 1

R
@

@R
R
@W
@R

� �
�W

R2

� �
¼ 0: (B1)

Boundary conditions are specified as

WðR ¼ Wo;TÞ ¼ sin ðTÞ; (B2)

WðR ¼ 0;TÞ ¼ 0: (B3)

In Eqs. (B1)–(B3), the variables are made dimensionless using the
relations (20)–(24)

For a fully developed time-periodic solution, we seek its repre-
sentation using a separation of variables technique

WðR;TÞ ¼ = exp ðiTÞFðRÞ
	 


: (B4)

With the form of the solution given by (B4), the governing equation
(B1) together with the boundary conditions (B2) and (B3) yields
the following boundary value problem:

iFðRÞ � d2FðRÞ
dR2

þ 1
R
dFðRÞ
dR
� 1
R2

FðRÞ
� �

¼ 0; (B5)

Fð0Þ ¼ 0; (B6)
FðW0Þ ¼ 1: (B7)

Re-arranging equation (B5), one gets

R2 d
2FðRÞ
dR2

þ R
dFðRÞ
dR
� ðiR2 þ 1ÞFðRÞ ¼ 0: (B8)

Recognizing that Eq. (B8) is in the form of the modified Bessel
equation, one can immediately write a solution to it as29

FðRÞ ¼ c1I1ði1=2RÞ þ c2K1ði1=2RÞ: (B9)

Here, I1 and K1 are the modified Bessel functions of the first and
second kind, respectively. Noting that we require the rotation rate
to be finite at the center, we can set c2 to be zero. For a more con-
ventional representation, we further transform the solution to be
written in terms of standard Bessel functions as opposed to the
modified ones. This can be done using the relation

InðzÞ ¼ i�nJnðizÞ; (B10)

where Jn is the Bessel function of the first kind. Applying this to Eq.
(B9) gives a full solution of the following form:

WðR;TÞ ¼ c0 exp ðiTÞJ1
ffiffiffiffi
i3
p

R
� �

; (B11)

which, after applying the boundary condition at the wall, gives

WðR;TÞ ¼ = exp ðiTÞ J1
ffiffiffiffi
i3
p

R
� �

J1
ffiffiffiffi
i3
p
Wo

� �
( )

: (B12)
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