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Effect of artificial length scales in large eddy simulation
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A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented
in the current study for high Re neutral atmospheric boundary layer flows using an exponentially
accurate spectral element method in an open-source research code Nek5000. The effect of artificial
length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and
structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in
the spectral element framework. The study provides an understanding of the various length scales and
dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner
and outer layer eddies which are responsible for the correct behavior of the mean statistics in accor-
dance with the definition of equilibrium layers by Townsend. An economical and accurate LES model
based on capturing the near wall coherent eddies has been designed, which is successful in eliminating
the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the
streamwise variance. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4994603]

I. INTRODUCTION

The fidelity of the numerical simulations for very high
Reynolds number flows, e.g., atmospheric boundary layer
(ABL) with Re∼108–1012, relies on the design of Large
Eddy Simulations (LESs)1,2 with a capability of resolving only
scales of a certain order ∆ (related to a grid size or a filter size)
while modeling the remaining scales smaller than ∆. For high
Reτ = uτH/ν [H is the boundary layer (BL) thickness, uτ
is the skin friction velocity, and ν is the kinematic viscos-
ity], rough-wall turbulent shear flows as in the ABL, the grid
requirements prohibit the resolution of a viscosity dominated
inner layer δν = ν/uτ and the scales associated with the aero-
dynamic roughness z0 � H at the bottom wall. Consequently,
shear stress boundary conditions invoking the Monin-Obukov
similarity theory3 instead of no-slip at the bottom wall have
been used as a near wall model (cost independent of Reτ) to
emulate the law of the wall (LOTW) in atmospheric boundary
layers.

In the near wall modeling LES framework, the dynamics
of the smallest Kolomogorov or even the viscous dominated
inner layer scales cannot be resolved, limited by the size of the
computational grid. The smallest physical velocity and length
scales that can be captured correspond to the attached eddies
in the inertial layer [∼ uτ for velocity scale and ∼ κ(z + z0) for
length scale that corresponds to a log layer, with κ ≈ 0.41 being
the Von-Karman constant and z being the normal distance from
the wall4]. These length scales are dominant compared to δν
and z0 far away from the viscous wall effects. Apart from
the physical length scales, there are additional scales that are
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generated as an artefact of the subgrid scale (SGS) closure
in an LES model and from the numerical grid in certain low
order discretizations.5 Although, both dissipative6–9 and dis-
persive10,11 subgrid scale closure models have been used in
the past, a dissipative type of subgrid closures (based on the
Smagorinsky model) has gained immense popularity in the
last two decades in the simulation of atmospheric flows12–15

owing to its inherent stabilizing properties in high Re simu-
lations while generating reasonably consistent physics in the
flow, even without the energy backscatter.16,17 In particular for
a dissipative LES model, a wall-damped standard Smagorin-
sky model17 is being used in our current simulations as a
less computationally expensive alternative to some other pro-
posed models, such as the turbulent kinetic energy (TKE)
two-equation model,18 equilibrium-based dynamic model,9 or
adaptive Smagorinsky model.19 For dissipative models, an arti-
ficial viscous sublayer due to LES dissipation in the grid will
be formed near the wall (see Refs. 1 and 2 for a more compre-
hensive discussion). The additional effects of filtering in the
near-wall modeling would also impose an unphysical scale
near the wall. It is thus the interaction of the physical and arti-
ficial length scales and the dominance of one over the other
that give rise to the near wall dynamics of the flow in numerical
simulations.20

The predominance of artificial length scales, especially
in the near-wall region of high Re ABL flows, has been long
known to influence the statistics of the near wall region, e.g.,
the overshoot by 50%–100% of the normalized mean stream-
wise velocity gradient φ(z) = κz/uτ dU

dz from the theoretical
value of one (log law) in the lower 10% of the atmospheric
boundary layer, commonly known as the problem of log-layer
mismatch (LLM).9,14,17,20–24 Sullivan et al.14 pointed out that
the neutral ABL models have worse results in terms of LLM
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compared to convective or stably stratified counterparts. LLM
is usually attributed to a poor numerical accuracy (numeri-
cal dissipation and dispersion associated with insufficient grid
resolution in discretization schemes) and inefficient SGS mod-
eling. The elimination of LLM has been partially addressed in
the previous literature. The related studies include modifica-
tions to the design of the SGS model to incorporate decreasing
integral length scales of the near-wall eddies,9,17,24,25 explicit
filtering in the wall closure model,19,25,26 and deconvolution
type reconstruction techniques along with the Smagorinsky
type dissipation.21 More complicated techniques have also
been proposed, including optimal control theory,27 designing
high accuracy zones for the law of the wall,20 and blending
functions in self-adaptive Smagorinsky models.19

Unlike the previous engineered ways of eliminating the
dominance of artificial length scales while addressing LLM,
our choice of an efficient LES design for a rough wall-bounded
flow (a canonical representation of a neutral ABL) is entirely
based on the rudimentary knowledge of associated physical
length scales of the turbulent near wall eddies that are affected
due to nonlinear dissipative SGS and near wall stress mod-
els. A fundamental perception of such length scales acts as a
better guidance to control the LES dissipation in a simplified
way such that the effect of physical scales can be retrieved in
the current study. While the phenomenon of the log-layer mis-
match in the mean streamwise velocity gradient and a relatively
less known secondary peak generation in streamwise veloc-
ity variance seen in experiments are indeed manifestations of
the dominance of artificial length scales in the flow,28,29 an
incorrect physics behind it cannot be properly analyzed in a
coordinate framework in a physical space (x, y, z). Rather, these
deficiencies are easier to visualize in a framework where the
multiple length scales can be decoupled, since the nonlinearity
in the LES model would incur different levels of detriment at
different scales of motion. The presence of periodic bound-
ary conditions in the streamwise and spanwise directions in
the computation of neutral ABL flows (consistent with the
physics due to homogeneity) conveniently allows us to con-
ceive the definition of length scales in a proper way by studying
important metrics in turbulence like kinetic energy and shear
stress spectra in the wavenumber space.28,30–32 For example,
the inverse of streamwise and spanwise wavenumbers (kx,
ky), or the wavelengths λx,y ∼ 2π/kx,y, gives an estimate of the
length scales of turbulence corresponding to a specified turbu-
lent kinetic energy and a shear stress in the spectra. However,
to model the effects of the dynamics of the near wall coherent
structures which scale with the wall normal distance z from the
wall (e.g., attached eddies4,33), the eddy viscosity of the SGS
model must be decreased towards the wall to reflect the con-
tribution of smaller integral scales of the near wall eddies that
would allow λx, λy and their scaling laws to be varying with z.
The approaches presently proposed in the literature to dynam-
ically control the eddy viscosity near the wall in the neutral
ABL simulations, such as scale dependent dynamic Smagorin-
sky9,25 or scale adaptive Smagorinsky19 model, are expensive
due to a calculation of eddy viscosity dynamically at every time
step and also due to a stringent time stepping requirement for
stability compared to their static counterparts. To circumvent
this problem, in the current simulation, we resort to a relatively

inexpensive method of standard Smagorinsky with Mason and
Thompson wall damping17 for decreasing the eddy viscosity
as we move towards the wall. In our current computations,
we use an exponentially accurate spectral element discretiza-
tion in all directions which provides minimum dissipation and
dispersion errors asymptotically.34,35 The previous literature
has shown an importance of minimally dissipative numeri-
cal schemes for large eddy simulations.9,36–38 In this regard,
the spectral element method (SEM) can be considered as a
robust framework for analyzing the performance of the LES
models since the length scales involved in the current simula-
tion correspond only to the physical length scales limited by
the grid size and the artificial length scales due to the LES
approximations.

In the current paper, we investigate the effect of artificial
length scales on a neutral ABL (as incurred by the SGS and
the near wall LES models), try to understand the nature of
the incorrect physical mechanisms in the near-wall region that
occur due to such scales, and finally, suggest how to choose
the LES model parameters in a spectral element framework
that can reduce the effect of artificial length scales and repli-
cate the effect of true physical length scales in the flow with
reasonable accuracy. Most importantly, our current study also
provides a design rubric for standard Smagorinsky SGS clo-
sures in a spectral element method based on the least alteration
of the true physics observed with these models. Furthermore,
the multiscale spectral analysis with different subgrid models
provides a basic understanding of the physics of the inner- and
outer-layer eddies of the neutral ABL and relates their similar-
ities to the eddies found in high Re channel flows and turbulent
boundary layers.28–32 All the results in our current simulation
have been compared against LES results from the previous lit-
erature9,25 or rigorous analytical results of turbulence statistics
and spectra corroborated with the moderately high-Reynolds
number Direct Numerical Simulation (DNS) data.30,31,39

The rest of the paper is organized as follows. First, we doc-
ument the numerical methods, where we provide the details of
the spectral element method and large eddy simulation with
the near wall modeling (NWM). Then we provide a short
section on the choice of the computational domain with its
proper justification, followed by the results and discussion on
the statistics and the spectral analysis of the turbulent quan-
tities. At the end, we discuss the conclusions from our key
findings.

II. NUMERICAL METHODS

In the computational domain, the 3D incompressible
Navier-Stokes equations are solved in a weak formulation
using an exponentially accurate higher order spectral element
method40,41 or more specifically Nek5000 (refer to Ref. 42 for
details). In this method, the weak formulation of the equations
is carried out by a weighted residual technique (orthogonal
projection of the residual of the equations), particularly by a
Galerkin projection method42,43 cast using the concept of inner
products in functional spaces.

In spectral element methods (SEMs),40,42,43 the decom-
position of the computational domain consists of subdividing
Ω̄ = Ω ∪ ∂Ω into E non-overlapping adjacent rectilinear
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elements such that Ω̄ = ∪E
e=1Ωe. Each Ωe is an image of a

reference subdomain under a mapping xe(r) ∈ Ωe → r ∈ Ω̂,
with a well defined inverse re(x) ∈ Ω̂→ x ∈ Ωe, where the 3D
reference subdomain is Ω̂ = [−1, 1]3. Scalar functions within
each local element Ωe are represented as the N th order tensor
product polynomials on a reference subdomain Ω̂. A consis-
tent approach of using spectral element discretization involves
using polynomial orders of pressure interpolants (basis func-
tions) two orders lower than the velocity interpolants. This is
done in part to remove the spurious modes of pressure along the
lines of a finite volume approach.41,43 With such decomposi-
tion, a choice of the functional spaces of velocity and pressure
fields is known asPN −PN−2 formulation.43 In 3D, the velocity
function in the spectral element method in an element can be
expressed as follows:

ue(r1, r2, r3)|
Ω̂
=

Nx∑
i=0

Ny∑
j=0

Nz∑
k=0

ue
ijkπNx ,i(r1)πNy ,j(r2)πNz ,k(r3),

r1, r2, r3 ∈ [−1, 1]3, (1)

where πNx ,i(r1), πNy ,j(r2), πNz ,k(r3) are the Lagrange polyno-
mial based interpolants of degree Nx, Ny, and N z. Identically
the pressure function in the SEM in the local element with
π

p
N ,j(ζ) ∈ PN−2(ζ) can be given as

pe(r1, r2, r3)|
Ω̂
=

Nx−1∑
i=1

Ny−1∑
j=1

Nz−1∑
k=1

pe
ijkπ

p
Nx ,i(r1)πp

Ny ,j(r2)πp
Nz ,k(r3),

r1, r2, r3 ∈ [−1, 1]3. (2)

In the current formulation, we use Nx = Ny = N z = N.
The time discretization of the Navier-Stokes solver in the cur-
rent spectral element code Nek500044 involves a 3rd order
backward difference/extrapolation scheme (BDF/EXT) with
operator integrator factor splitting (OIFS) based characteris-
tic time-stepping. The code is fully dealiased using the 3/2
rule,45,46 the velocity is solved using the preconditioned con-
jugate gradient (CG) method, and the pressure solver uses the
iterative generalized mean residual solver (GMRES) method
in the Krylov subspace.

A. Large eddy simulation: Subgrid scale modeling

The spatially filtered 3D Navier-Stokes equations for
large eddy simulation of neutral ABL flows can be obtained
by incorporating a convolution integral filter on the original
Navier-Stokes equations

∂ũ
∂t

+ ũ∇ ũ +
1
ρ
∇ p̃∗ − F̃ − ν∇2ũ = −∇ ·τττSGS(ũ, ũ). (3)

The subgrid stress (SGS) tensor in Eq. (3), τττSGS(ũ, ũ) = ũuT

− ũũT arising from the non-commutativity of filtering with
the nonlinear advection term, is modeled using a Smagorinsky
type eddy viscosity closure

τττSGS −
1
3

tr(τττSGS)I = −2νt∇
sũ, (4)

where ∇sũ = 1
2 (∇ ũ +∇ ũT ) is the filtered stain rate and I is the

identity tensor. In the classical Smagorinsky model, the eddy
viscosity is given by

νt = (lf )2 |∇
sũ|, (5)

where |∇sũ| = (2∇sũ : ∇sũ)1/2. The filter length scale lf is
assumed to be proportional to the grid filter width (cutoff scale)
∆, lf = Cs∆, and Cs is the non-dimensional Smagorinsky coef-
ficient. According to Ref. 16, lf can also be interpreted as the
mixing length of the subgrid scale eddies (lf is usually less than
∆ justifying the name “subgrid scale”). The grid filter width
here is calculated as ∆ = (∆x∆y∆z)1/3,47 where ∆x,∆y,∆z
are taken at the Gauss-Lobatto-Legendre (GLL) nodes as the
weighted averages of the node distances (analogous to a central
difference scheme) at the element interior and one sided dif-
ference at the element boundaries. For high Reynolds number
turbulent ABL flows, we use near wall algebraic wall damping
functions by Mason and Thomson,17

1
ln
f

=
1

(C0∆)n +

{
1

κ(z + z0)

}n

, (6)

or written directly in terms of the Smagorinsky coefficient,

1
Cn

s
=

1
Cn

0

+

{
∆

κ(z + z0)

}n

. (7)

Equation (6) essentially represents an ad hoc blending function
with parameters C0, n such that the filter length scale saturates
at lf (z)∼C0∆ at the outer layer while retrieving Prandtl’s mix-
ing length lf (z) ∼ κ(z + z0) as we approach the wall. While C0

controls the asymptotic value of lf (z), n controls the shape or
the growth rate of lf (z) in the inner layer as we will see later.
Here κ is the Von-Karman constant and z0�H is the aerody-
namic roughness length of the bottom “wall,” where H is the
boundary layer thickness.

B. Model assumptions: Boundary conditions

We incorporate periodic boundary conditions in the
streamwise and spanwise directions while the top boundary
conditions are stress free: ∂ũ/∂z = ∂ṽ/∂z = 0 and w̃ = 0,
where ũ, ṽ , w̃ are the resolved streamwise, spanwise, and wall
normal velocities. At the bottom surface, we use a wall stress
boundary condition without having to resolve the rough wall,48

relating the wall stress vector to the in-plane horizontal velocity
vector ũuuh at the first half-node from the wall using the standard
Monin-Obukhov similarity law3 along with no-penetration
conditions of large eddies, w̃ = 0,

1
ρ
τs = −κ

2
̂̃uuuh, ∆z

2
(x, y, t)| ̂̃uuuh, ∆z

2
|(x, y, t)

log( z
z0

)���
2
∆z
2

, (8)

where | ̂̃uh, ∆z
2
| =

√
̂̃u

2
∆z
2

+ ̂̃v
2
∆z
2

and ̂̃uh, ∆z
2
= ̂̃u ∆z

2
~ex + ̂̃v ∆z

2
~ey (~ex, ~ey

are unit vectors in the x, y directions). The “hat” represents
additional explicit filtering carried out in the modal space by
attenuating kc = 4, highest Legendre polynomial modes of the
spectral element model (please refer to Appendix A for the
description of the explicit filtering method). This explicit fil-
tering is done along the lines of Refs. 19 and 25 to control
the log-layer mismatch and to bound the wall shear stress.
For collocated spectral element methods, ̂̃u ∆z

2
, ̂̃v ∆z

2
are calcu-

lated as an interpolation at half wall node ∆z/2, i.e., between
̂̃u(x, y, 0, t) and ̂̃u(x, y, z = ∆z, t) (and similar procedure for ̂̃v).
The aerodynamic roughness is z0 = 10�4H which corresponds



075105-4 T. Chatterjee and Y. T. Peet Phys. Fluids 29, 075105 (2017)

to the previous literature.9,19 Existing literature on near wall
modeling9,12,19,47,49–51 has generally used vertically staggered
finite-difference schemes when using stress boundary condi-
tions for rough wall models with ∆z/2 being a physical grid
distance of the horizontal velocities away from the wall. The
present paper incorporates a new methodology for rough wall
modeling using the collocated spectral element method, which
is reflected in Eq. (8). Our spectral element model for shear
stress developed using weak formulation is physically consis-
tent, where the wall model essentially acts as a momentum flux
closure scheme (see Appendix B for a mathematical formalism
of stress boundary conditions in the SEM method).

III. PROBLEM FORMULATION
A. Choice of LES parameters

In order to analyze the subgrid-scale model given by Eqs.
(4)–(7), we plot the dependence of the Smagorinsky coefficient
Cs from Eq. (7) on the vertical distance z in Fig. 1. The pur-
pose of our analysis is to choose the appropriate values of the
subgrid-scale model parameters C0 and n to use in spectral-
element methods in high-Reynolds number simulations of a
neutral atmospheric boundary layer. Large eddy simulations
in a continuous Galerkin based SEM with Smagorinsky-type
models are not extensive in the community,52,53 and even
though some recent studies by Lodato and co-workers54,55

have explored moderate Reynolds number LES in a discon-
tinuous flux based SEM framework, the authors do not know
any attempts to use these methods in the context of very high
Reynolds numbers and atmospheric boundary layer flows. As
discussed earlier, the value of C0 controls the asymptotic value
of the Smagorinsky coefficient Cs away from the wall. In order
to understand the influence of the parameter n, the values
of Cs for a fixed value of C0 = 0.16 and different values of
n = 0.5, 1, 2 are plotted in Fig. 1(a). Note that this plot is
grid-dependent (as ∆ is grid-dependent), and Fig. 1 is plot-
ted for the baseline SEM grid (30 × 20 × 24 elements) used
in the current simulations. We see that although the slope of
Cs in the limit of z→ zwall does not depend on n which can
also be understood from a previously discussed near-wall scal-
ing of lf (z) ∼ κ(z + z0), the value of n controls the growth
of Cs in the inner layer and, specifically, lower values of n
result in a slower growth of Cs and a longer vertical distance
it takes for Cs to saturate to its asymptotic value of C0. This
slow growth introduces a physically relevant dependence of

FIG. 2. Values of {C0, n} tuple used in the past literature in a paramet-
ric space for the wall-damped Smagorinsky model. MT (gray rectangular
patch)—Mason and Thomson;17 P, P2—Porté-Agel et al.;9 B—Bou-Zeid
et al.;25 M—Meyers;26 M2—Wu and Meyers.19 C is the {C0, n} parameter
tuple recommended in our paper for the standard wall-damped Smagorinsky
model with SEM. {C0, n} corresponding to B, C, M, and P2 are used in current
simulations.

Cs on z/∆ in the inner layer that results in correct near-wall
dynamics and represents consistent trends of filter scales with
grid-refinement. It is thus understandable that, in order to pro-
vide comparable dissipation length scales in the outer region,
higher values of C0 are usually used with lower values of n:
C0 |n=0.5 > C0 |n=1 > C0 |n=2. This is indeed reflected in the
choice of parameters C0 and n reported in the previous liter-
ature9,17,25,26,56 and summarized here in a parametric form in
Fig. 2. The dependence of Cs versus z for the current choice
of parameters is shown in Fig. 1(b). In addition to standard
values of n = 1, 2, we also propose to explore a lower value
of n = 0.5 ({C0, n} = {0.19, 0.5}) than that reported in the
previous literature, which corresponds to a slower growth of
Cs in the inner layer and provides a better control of near-
wall dissipation length scales. We will show in the current
paper that this model indeed performs remarkably well in the
SEM LES of atmospheric boundary layer flows. It is interest-
ing to note that the slower inner growth of Cs corresponding to
C0 = 0.19, n = 0.5 is similar to the dynamic models of Porté-
Agel.9 In addition, we also consider an extremely low value of
C0 = 0.09 with n = 2 similar to Ref. 26 in our simulations and
show that attempts to control the near-wall dissipation by low-
ering the value of C0 without changing the near-wall growth
of Cs (determined by n) results in an unphysical turbulence in
the current spectral-element method.

FIG. 1. Smagorinsky coefficient Cs vs z/H for the cur-
rent SEM grid (30 × 20 × 24 elements). (a) C0 = 0.16
(fixed) n = 0.5, 1, 2. C, n = 2; �, n = 1; +, n = 0.5. (b) C,
C0 = 0.16, n = 2; �, C0 = 0.17, n = 1; +, C0 = 0.19, n
= 0.5; ◦, C0 = 0.09, n = 2; Inset: variation of Cs vs z/∆,
zoomed-in. κ = 0.41, von Karman constant; z0 = 10�4H,
aerodynamic roughness length.
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TABLE I. Suite of LES cases for the neutral ABL flow involving parametric
variation. kc is the number of modes of cutoff filter per element in explicit
filtering of the NWM (see Appendix A) and N is the order of Lagrange-
Legendre polynomial in each element. {C0, n} are the tuning parameters of
the wall-damped Smagorinsky SGS model.

Case kc/N {C0, n}

C16
0 n2k2/7

c (I) 2/7 {0.16, 2}
C16

0 n2k4/7
c (IIa) 4/7 {0.16, 2}

C9
0 n2k4/7

c (IIb) 4/7 {0.09, 2}
C16

0 n2k6/7
c (III) 6/7 {0.16, 2}

C17
0 n1k2/7

c (IV) 2/7 {0.17, 1}
C17

0 n1k4/7
c (V) 4/7 {0.17, 1}

C17
0 n1k6/7

c (VI) 6/7 {0.17, 1}
C19

0 n05k2/7
c (VII) 2/7 {0.19, 0.5}

C19
0 n05k4/7

c (VIII) 4/7 {0.19, 0.5}
C19

0 n05k6/7
c (IX) 6/7 {0.19, 0.5}

Considering also the variation in the filtering parameter
kc in the near-wall model as discussed in Sec. II B, Table I
summarizes the list of cases investigated in the current paper
involving a parametrically varying wall-damped Smagorinsky
model. It must be noted that both the Smagorinsky length scale
lf and the cutoff modes kc in the near-wall model incorporate
artificial length scales into our flow simulations. Our purpose is
to analyze the behavior of the numerical models in the presence
of these artificial length scales from the perspective of physics
and develop a robust and physically consistent ABL model in
the context of spectral elements.

B. Computational domain

The computational domain is taken to be 2πH×πH×H as
in Ref. 19, with Re=U∞H/ν = 1010, where U∞ is the stream-
wise velocity outside of the boundary layer. The size of the
computational domain ensures a sufficient decay of the stream-
wise auto-correlation length scale necessary to make periodic
boundary conditions consistent57–59 and is also able to cap-
ture the appropriate scaling laws of the attached eddies4,33 as
reported in the previous DNS literature.30,31 The discretiza-
tion parameters of the computational domain are presented
in Table II. Ne

i represents the number of elements in the ith
direction and Nxyz is the global number of grid points used
in the computation. Also, ∆x/∆z, ∆x/∆y are the aspect ratios
of the spectral elements, where ∆x, ∆y, ∆z are the sizes of
the spectral elements in the respective directions. We use 7th
order Lagrange-Legendre polynomials as the basis functions
resulting in 83 collocation nodes per element. All the analyses
involving the statistics and spectra in Secs. IV A–IV D are
carried out for the baseline grid in Table II. However the LES
simulations have also been tested for five other coarsened or
refined grids for the grid sensitivity analysis in order to support

TABLE II. The baseline grid parameters for LES of atmospheric boundary
layers.

Ne
x × Ne

y × Ne
z Nxyz ∆x/∆z ∆x/∆y ∆z/z0

30 × 20 × 24 5.02 × 106 5.0265 1.33 27

FIG. 3. Three BW parameters20 compared to their critical value BW∗

=
{
N∗δ ,R∗, R∗LES

}
plotted in a bar chart as BW/BW∗ in our current wall-

damped Smagorinsky model for the baseline grid (30 × 20 × 24 elements).
Blue (left): Nδ/N∗δ ; red (middle): R/R∗; brown (right): RLES/R∗LES . Black –
– is the threshold BW/BW∗ = 1 above which the results are considered in a
high-accuracy zone.20 Please refer to Table I for case numbering.

the robustness of the wall modeled LES. The detailed results
of the grid sensitivity can be found in Appendix C.

The minimum grid point wall-normal distance is ∆z/z0

' 20, manifesting that the first grid node does not resolve
the geometric roughness and lies in the log-law of the wall,
consistent with wall modeling conceptualizations.19 All the
grids designed for the current ABL are refined beyond the
critical grid resolution required for an accurate representa-
tion of the mean streamwise velocity statistics, as discussed
by Brasseur and Wei.20 The three parameters, identified by
Ref. 20 (hereby referred to as BW parameters) used for design-
ing a high-accuracy zone (HAZ), are (a) Nδ , the vertical grid
resolution in the domain; (b)R, the ratio of the turbulent shear-
stress to the total stress in the first grid point from the wall;
and (c) RLES , i.e., the Reynolds number based on the SGS
eddy viscosity. According to Brasseur and Wei,20 these three
parameters need to be greater than some critical value to be
in the HAZ. For brevity, we show the BW parameters for the
different Smagorinsky based SGS models in Fig. 3 only for
the baseline grid. However, the conclusions can be gener-
alized for all the grids from Table VI in Appendix C. The
vertical resolution in spectral elements ensures that Nδ is well
above the critical value N∗δ ∼ 45–50. The other two parame-
ters,R and RLES , are SGS model dependent and are only above
their critical values indicating the appropriate accuracy of the
model, for cases VII-IX (C19

0 n05k2/7
c , C19

0 n05k4/7
c , C19

0 n05k6/7
c ).

For collecting statistics presented in the manuscript, the sta-
tistical stationarity of the neutral ABL simulations was first
ensured after ∼45Te, where Te = 2πH/U∞ is the flow through
time, upon which the temporal averaging of statistics and col-
lection of instantaneous snapshots for spectral analysis have
been carried out for 120 T e time units.

IV. RESULTS AND DISCUSSION

In this section, we provide a detailed comparison of
the results involving the mean and turbulent statistics of our
LES computations with the data from the previous litera-
ture.9,25 The results are further corroborated by a rigorous
multi-dimensional spectral analysis that elucidates the flow
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physics in the inner and outer layers. Investigation of the results
involving the statistics and the spectra of our LES computa-
tions helps us suggest an accurate and reliable LES-NWM
model for spectral element computations, which can emulate
the correct physics of the eddies in wall-bounded turbulence.
The results have been further supported by the grid sensitivity
analysis (see Appendix C for details) which indicates that our
conclusions are grid invariant and the statistics has a leading
order effect from the wall model LES and not from the grid
itself.

A. Law of the wall: Generation of log-layer mismatch

The theory of turbulent flows suggests that a well-defined
region of a logarithmic dependence of the mean stream-
wise velocity on the vertical distance from the wall (log-
law) persists due to dominance of inertial scales in the inner
layer corresponding to the lower 10% of the boundary layer,
z/H ∼ 0.1.58 The log-law can be compactly represented in
terms of the non-dimensional streamwise velocity gradient,
φ(z) = κz/uτdU/dz, which attains a value of one in the log
layer [φ(z) = κz/uτdU/dz, z/H ≤ 0.1] and deviates from one
with φ(z)> 1, dφ(z)/dz , 0 beyond the inner layer depict-
ing the so-called wake region (for more details of the loga-
rithmic regime in high Re wall bounded turbulence, see, for
example, a review by Smits et al.29). Figures 4(a)–4(d) show
that except for cases C19

0 n05kj/7
c j = 2, 4, 6, all the current

LES models develop strong deviations from the logarithmic
trend of as much as 40%-60% at z/H < 0.1 known as the
log-layer mismatch (LLM). As was shown in the work of
Brasseur and Wei,20 these log-layer mismatches in LES are
likely to occur due to the presence of an artificial LES viscous
sublayer. Similar to physical log-law deviations due to
the viscous sublayer in smooth-wall channel flows,57,60 a

numerical viscosity (i.e., due to a subgrid turbulent vis-
cosity and other algorithmic additions to the dissipation)
creates a numerical frictional layer that causes the over-
shoot. Interestingly, as the true viscous overshoot scales
with the viscous units (ν/uτ) showing the same location of
the peak overshoot versus z+ for different Reynolds num-
bers,57,60 the LES overshoot scales with the “LES viscos-
ity” (νLES/uτ) showing the collapse of the velocity gra-
dient curves in the inner layer if plotted with these z+

LES
units.20

The manifestation of similar effects in our simulations
with the wall-damped Smagorinsky model is evident in Fig. 4.
We can see that decreasing C0 to 0.09 from 0.16 with n = 2
fixed (case C16

0 n2k4/7
c vs C09

0 n2k4/7
c ) decreases the overall eddy

viscosity in the LES computation, shifting the LLM peak from
z/H = 0.05 to z/H = 0.02 towards the wall as seen in Fig. 4(c)
indicating the shorter extent of the LES eddy viscosity sub-
layer. The peaks of the log-layer mismatch in Fig. 4 from our
current SEM simulations are closer to the wall compared to the
standard Smagorinsky model in the literature.9,19,25 We point
out that in cases C19

0 n05kj/7
c j = 2, 4, 6, the dissipation is low

enough that the inertial scales ∼κz dominate over artificial vis-
cous scales, which completely eliminates the formation of the
artificial sublayer and hence the LLM.

1. Effect of kc in the near wall model

The effect of explicit filtering in the near wall model
is not very conspicuously observed in the near-wall region,
z/H < 0.1, even though differences are visible in the far outer
layer. Explicit filtering retains the large-scale near-wall veloc-
ity structures for the model while filtering out the smaller
scales near the SGS limit. The fact that the log-law of the
wall has its significant contribution from the larger scales of

FIG. 4. Temporally and horizontally averaged normal-
ized mean streamwise velocity gradient Φ(z) vs z/H for
SGS parameters. (a) Cases C16

0 n2kj/7
c , j = 2, 4, 6, (b)

cases C17
0 n1kj/7

c , j = 2, 4, 6, (c) cases Cξ
0 n2k4/7

c , ξ

= 16, 9, and (d) cases C19
0 n05kj/7

c , j = 2, 4, 6. LS-
DSMG: Lagrangian scale dependent dynamic Smagorin-
sky model, Bou-Zeid et al.;25 Std. Smag. (Standard
Smagorinsky), Bou-Zeid et al.;25 S-DSMG: spatially
averaged scale dependent dynamic Smagorinsky model,
Porté-Agel et al.9 The dashed-gray line is demarcation
between the inner and outer layers.
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motion29,39 is manifested in the slight reduction of the log-
layer mismatch, with increasing the cutoff modes in filtering
kc/N, from 2/7 to 4/7 [see Figs. 6(b) and 6(c)]. However exces-
sive filtering on horizontal velocity, especially in models where
artificial viscous layer is not formed (cases C19

0 n2kj/7
c j = 2,

4, 6), can contribute to the underdissipative negative log-layer
mismatch as in Fig. 6(b) for kc = 6/7. However, further
studies of this effect are needed to form a more complete
description.

B. Reynolds stresses

For completeness of the discussion, we present the results
of the second order moments before moving on to the discus-
sion of the spectral analysis in Sec. IV C. A comparison of the
streamwise variance for the different model parameters of the
wall-damped Smagorinsky model with previously published
numerical simulations9 and laboratory scale experiments28 can
be found in Fig. 5. To better understand the near-wall ana-
lytical scalings of the variances, Fig. 6 shows some of the
resolved second order moments or Reynolds stresses for var-
ious parametric cases of the Smagorinsky based LES model
in a logarithmic plot. Perry et al.33,61 performed a detailed
analysis of the overlap regions in the spectra of ũ′2, ṽ ′2, w̃ ′2,

−ũ′w ′ for wall-bounded turbulence through the theory of an
equilibrium layer supported by their hot-wire experiments.
They found the evidence of a logarithmic trend in the stream-
wise and spanwise variance profiles, as well as a flat trend
(independence on z) in the wall normal variance and in the
kinematic shear stress in the near wall region z/H < 0.1. Such
logarithmic trends of streamwise variance (observed only in
C09

0 n2k4/7
c , C19

0 n05k4/7
c ) were also documented in later exper-

iments of wall bounded turbulence using hot wires28 and in

FIG. 5. Horizontally averaged resolved streamwise variance ũ′2 normal-
ized with u2

τ for different Smagorinsky based SGS models C16
0 n2k4/7

c ,

C17
0 n1k4/7

c , C09
0 n2k4/7

c , and C19
0 n05k4/7

c compared against scale-dependant

dynamic Smagorinsky (S-DSMG)9 model and wind tunnel experiment.28

the LES computations of rough wall ABL.24 In our computa-
tions, it is only for the case C19

0 n05k4/7
c that we observe correct

logarithmic trends of streamwise and spanwise variances, as
well as flat trends of wall normal variance and kinematic shear
stress in the near wall region z/H ∼ 10−2–10−1 [see Fig. 6(d)].
Interestingly, a similar effect of an artificial secondary peak
generation in streamwise variance is also observed in some
experiments28,29 due to the presence of artificial length scale
effects in hot wire probes.

FIG. 6. Variation of horizontally averaged resolved sec-

ond order moments χ2 = ũ′2, ṽ′2, w̃′2,−ũ′w′ with z/H
for different models. (a) Case C16

0 n2k4/7
c , (b) case

C17
0 n1k4/7

c , (c) case C09
0 n2k4/7

c , and (d) case C19
0 n05k4/7

c .
Solid black line: log-trend of streamwise variance,
A1 = 1.25 is the slope of the logarithmic trend.24,33

Dashed black line: flat trend of kinematic shear-stress—
equilibrium layer.



075105-8 T. Chatterjee and Y. T. Peet Phys. Fluids 29, 075105 (2017)

FIG. 7. (a) A schematic of a near-wall 1D u spectra,
depicting the scaling laws and indicating the regions of
k−1

x and k−5/3
x scaling. (b) A schematic of near-wall 2D

premultiplied u, v, w energy spectra, with the linear scal-
ing λy ∼ λx and the power law λy ∼ λ

1/p
x scaling shown for

u spectra. Both 1D and 2D spectra are representatives of
the near-wall phenomenon. A spectral ridge corresponds
to a change of scaling from linear to power-law.

C. Effect of length scales: Spectral analysis

The spectral analysis of wall-bounded turbulence illus-
trates a clear picture of the dynamics of turbulent eddies (see
the review by Jiménez39) responsible for the specific mean and
turbulent statistics as discussed in Secs. IV A and IV B.

In a statistical sense, the near-wall dynamics of high
Re turbulence is made up of a hierarchy of self-similar
coherent active wall normal motions, bearing Reynolds
stresses4,32,33,61–63 whose length scales λx ∼O(z) and the
velocity scales ∼ O(uτ). Apart from these eddies, also present
are the quasi-inviscid, anisotropic, and horizontal inactive
eddies with λx � O(z), “attached” in the sense of Townsend.4

These inactive motions at distance z from the wall can also be
thought of as being “active” at wall distances zλ � z, where zλ
is the vertical wall distance of the order of the length scale of
inactive motions.39 Larger coherent flow organizations in wall-
bounded turbulence, e.g., large scale motions (LSMs ∼ 3H)
and very large-scale motions (VLSMs�3H), carrying almost
50% of the kinetic energy and Reynold’s stresses are beyond
the scope of this paper, mainly due to a shorter computational
domain, and hence are not discussed here (for more details on
LSM’s and VLSM’s, please see Refs. 29, 32, and 63–65).

Strong analytical and experimental evidence of two dis-
tinct “overlap” regions in the spectra of streamwise and span-

wise turbulent intensities u′2, v ′2 and single “overlap” of Kol-

mogorov scaling for wall-normal turbulence intensity w ′2

have been found at very high Reynolds number wall-bounded
flows.33,61,66 The overlap between the integral and the attached
eddy length scales gives rise to the k−1

x scaling in streamwise
energy spectra, while the overlap between the attached eddy
and viscous/Kolmogorov scales gives rise to the Kolmogorov
k−5/3

x law of the cascade,33,58 with kx being the streamwise
wave number [see the schematic in Fig. 7(a)]. Despite some
debate on the existence of the k−1

x spectra,31,67,68 hot wire
experiments in Refs. 28 and 69–71 have shown that for mod-
erately high Re wall-bounded turbulence, a decade of range in

the inverse law spectra can be observed in the near wall regime,
at around z/H . 0.01–0.02. Additionally, the data from the
previous literature also indicate a consistent region of k−1/2

x

scaling at larger scales, or smaller wavenumbers kxz, before
the “well-documented” k−1

x region, at high Re atmospheric sur-
face layer experiments72–75 and neutral atmospheric boundary
layer simulations.9,26 Although this region was not explicitly
discussed in the previous literature, we find strong evidence
of this scaling predicted by our best-performing SGS model,
{C0, n} = {0.19, 0.5}, and present some additional results in
support of this.

A more supportive picture can be obtained in the two-
dimensional spectra scenario, for example, looking at a 2D
energy spectrum premultiplied by wavenumbers kx, ky, as
in the schematic of Fig. 7(b). A self-similar linear-scaling
λy ∼ λx exists for length scales λx . 10z, which corresponds
to the active wall-normal motions. These motions are three
dimensional motions due to the presence of vertical energy
(Eww) spectra. The regime of larger length scales, λx & 10z
(kxz∼ 100), where the power-law scaling is present, corre-
sponds to the attached inactive motions, which are mainly
horizontal motions, as seen from the long-wavelength cutoff
of vertical energy, Eww , spectra. (For more details of “active
and inactive motions,” see Refs. 4, 74, 76, and 77.) The basis
of this power-law behavior λy ∼ (λx)1/p has been discussed in
detail in Refs. 30 and 31 and is mainly attributed to the effects
of long-time dispersion of flow structures in background tur-
bulence. While p = 3 scaling occurs at low-speed regions of
the near wall streaks, dominated by shear, the p = 2 scaling
is more generic and is not only formed at high-speed regions
of the near wall streaks, dominated by a uniform momentum,
but also due to the dissipation in the outer layer. Figure 8(a)
shows the near-wall streaky flow, which has completely differ-
ent flow structures than the outer layer in Fig. 8(b), the latter
being populated by much larger eddies and is less coherent (the
snapshots are shown for case C19

0 n2k4/7
c ). It is to be noted that

for brevity and easy reference, we refer to the power scaling

FIG. 8. Time-snapshot of velocity magnitude
√

u2 + v2 + w2, normalized by U∞ at the xy plane for
case C19

0 n05k4/7
c . (a) Inner layer, z/H = 0.025. Black

patch: 0.7U∞; white patch: 0.5U∞. (b) Outer layer,
z/H = 0.875. Black patch: U∞; white patch: 1.2U∞.
Encircled region in (a): low velocity streaky flow,
λx ∼ 16z.
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FIG. 9. Normalized streamwise energy spectra
Euu(kx , z)/u2

τ z vs kxz at different normalized heights. (a)
ξ = z/H = 0.028 and (b) ξ = z/H = 0.519 compared
against previous literature.9 Case C16

0 n2k4/7
c (dashed

line), C17
0 n1k4/7

c (chain-dotted line), C09
0 n2k4/7

c (dotted

line), C19
0 n05k4/7

c (solid line), scale dependant dynamic

model9 (gray circle).

in Fig. 7(b) at the top of the contour as the “A” scaling, while
that in the bottom of the contour as the “B” scaling. It must
be appreciated that a part of the region of 2D spectra between
the “A” and “B” power law scaling behavior, corresponding
to the attached inactive motions, when integrated over the λz

wavelength, would supposedly generate the classic k−1
x scaling

law. More specifically, we would like to mention that the com-
munity in favor of the k−1

x scaling28,33,70,71,75 actually found
evidence of this inverse law in the regime of integration just
discussed. Additionally, even though the focus of our computa-
tional study involves rough walls, previous literature75,78,79 has
consistently shown that smooth wall scaling laws of attached
eddies also hold for rough walls and particularly if the rough-
ness length is less than 2.5% of the boundary layer thickness
(z0/H = 10�4 in the current simulations) as also predicted by
Refs. 80 and 81.

1. 1D spectra

The comparison of the spectra for the LES models in our
study (see Table I) will be based on the robust theoretical
scaling laws of the active and inactive motions as discussed
above since these eddies comprise the most important dynam-
ics of the wall bounded flow. It must be noted that the length
scale λx ∼ 10z is the barrier between the active and inactive
motions. The discussion in this section would not only lead us
to the most consistent model corresponding to the correct spec-
tral behavior but also point to the implications of the incorrect
scaling laws produced by the other models in terms of numer-
ically inconsistent physics of the active and inactive eddies. In
the subsequent analysis, the energy spectra and cospectra are
calculated as Euu = 〈ûû∗〉 and φuw = 〈ûŵ∗〉, where ˆ denotes
the Fourier transform, ∗ denotes the conjugate transpose, and
〈〉 denotes the temporal averaging.

In Fig. 9, we plot the mean (temporally, horizontally
averaged) streamwise energy spectra for different parame-
ters of the Smagorinsky SGS model compared against the
scale-dependant dynamic model.9 An excellent agreement
in the streamwise spectra for our best-performing model
(C19

0 n05k4/7
c ) at different length scales with the state-of-the-

art LES model9 for the neutral atmospheric boundary layer is
notable. For the more detailed spectral analysis of the models,
the variation of streamwise energy spectra at four different
heights is shown in Fig. 10. It was observed that the effect of
filtering in near wall models was not conspicuous in the spec-
tra, except for, perhaps, a very slight effect at the largest scales
of motions. A reference plot in Fig. 11 for the SGS model
C0 = 0.19, n = 0.5 with different kc is provided to support the
claim above. From hereafter, we would tailor our discussions
mostly to the effect of SGS closures since they have more
significant impact on the spectral results. Furthermore, it is
worth mentioning that the spectral plots in this section and
Secs. IV C 2 and IV D are corroborated by a grid sensitivity
analysis (see Appendix C for details) which illustrates the
fact that the scaling laws and the shape of the spectra have
a more dominant effect from the wall model LES than the grid
itself.

While the case C19
0 n05k4/7

c predicts the correct�1 and�5/3
scaling law along with the regime of change of the scaling
at kxz∼O(100), the situation is quite different for “overdis-
sipative” (Cases C16

0 n2k4/7
c , C17

0 n1k4/7
c ) as well as “under-

dissipative” (C09
0 n2k4/7

c ) models. For Smagorinsky based over-

dissipative models, the k−5/3
x law near the wall, z/H � 0.1, is

absent and the location of the k−1
x regime is shifted to larger

length scales with a much shorter extent, indicating that the
change of scaling laws occurs at kxz ∼ O(10−1). The �5/3 law
cascade, however, is recovered in the outer layer, z/H > 0.1.

FIG. 10. Normalized streamwise energy spectra
Euu(kx , z)/u2

τ z vs kxz at different normalized heights
ξ = z/H = 0.02, 0.1, 0.5, 0.75. (a) Case C16

0 n2k4/7
c ,

(b) case C17
0 n1k4/7

c , (c) case C09
0 n2k4/7

c , and (d) case

C19
0 n05k4/7

c . Vertical dotted line—kxz = 100.
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FIG. 11. Normalized streamwise energy spectra Euu(kx , z)/u2
τ z vs kxz at dif-

ferent heights ξ = z/H = 0.02, 0.1, 0.5 for different values of kc/N = 2/7
(solid line), 4/7 (dashed line), 6/7 (chain dotted line) in explicit filtering of the
NWM for models {C0 = 0.19, n = 0.5}. Dashed circle—kxz = 100

What is surprising is that with “underdissipative effects” as
in the case C09

0 n2k4/7
c , the improvement in the spectral scaling

near the wall is not noticeable. While the dissipation in the finer
scales is indeed smaller, it still cannot recover the �5/3 law and
neither does it reflect the correct location of the k−1

x law. The
under-dissipative effects are further pronounced at the outer
layer, with the scaling law of the power scales clearly deviat-
ing from the �5/3 law, manifesting an inefficient cascade. A
point of further concern is the region of k−1/2

x scaling which
was also observed from the data of the previous literature,9,75

which is conspicuously absent in all the models, except for the
case C19

0 n2k4/7
c .

The fact that the extent and location of length scales of the
k−1

x scaling are not captured in some of our LES simulations,
e.g., cases C16

0 n2k4/7
c , C09

0 n2k4/7
c , C17

0 n1k4/7
c , can be attributed

to the effects of “incorrect SGS dissipation” at different dis-
tances from the wall, as manifested by the 1D premultiplied
streamwise energy spectra contours kxEuu(kx, z)/u2

τ in Fig. 12.
Figures 12(a)–12(c) clearly indicate that only case C19

0 n05k4/7
c

shows the linear growth of length scales λx with distance z
from the wall, for a band of energy contours, corresponding to
the logarithmic layer.28,39 While case C16

0 n2k4/7
c retains some

of the linear scaling close to z/H ∼ 0.1, a significant deviation
from the linear trend occurs for scales λx < H . Case C09

0 n2k4/7
c

displays, perhaps the worst behavior, with non-linear scaling
of λx vs z even for the larger scales of motion, λx ≥ H .

The discussion above suggests that a proper LES model
should provide an optimum amount of dissipation in each
region, and simply lowering C0, while decreasing the near-
wall filter scales and improving the near-wall behavior of the
spectra, results in underdissipation and incorrect scaling law
predictions in the outer layer. Control of the SGS dissipation
through the change of the shape function in Eqs. (6) and (7) via
the two parameters, C0 and n, which permits a slower growth
rate of Cs in the inner layer (case C19

0 n05k4/7
c ), provides an

appropriate amount of dissipation for both the inner and the
outer layers in the current SEM method.

We plot the shear stress spectra for the parametric varia-
tion of wall-damped SGS models at a fixed kc/N = 4/7 (cases
C16

0 n2k4/7
c , C09

0 n2k4/7
c , C17

0 n1k4/7
c , C19

0 n05k4/7
c ) in Fig. 13. Sim-

ilar to the streamwise spectra (Fig. 10), distinct scaling laws
also exist in the shear stress spectra. Corresponding to the
two overlap regions in the Euu spectra,33 i.e., k−1

x and k−5/3
x

FIG. 12. Premultiplied normalized 1D spectra contour-
map kxEuu(kx , z)/u2

τ for different LES models in the
streamwise wavenumber-wall normal distance plane.
Streamwise wave number λx and wall distance z are both
normalized by ABL thickness H. (a) Case C16

0 n2k4/7
c , (b)

case C09
0 n2k4/7

c , and (c) case C19
0 n05k4/7

c . Dashed line:
λx/H ∼ z/H.

FIG. 13. Normalized shear stress spectraφuw (kx , z)/u2
τ z

vs kxz at different normalized heights ξ = z/H = 0.02,
0.1, 0.5, 0.75. (a) Case C16

0 n2k4/7
c , (b) case C17

0 n1k4/7
c ,

(c) case C09
0 n2k4/7

c , and (d) case C19
0 n05k4/7

c .
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laws, one will also have k0
x and k−5/3

x regions in the Eww
spectra.30,33,81 For the near-wall organized motions carry-
ing significant amount of Reynolds stresses, the large- and
intermediate-scale organized motions near the wall should
be well correlated in terms of u, w motions, i.e., φuw(kx, z)
≈ Euu(kx, z)1/2Eww(kx, z)1/2, where φuw is the spectra of the
kinematic shear stress −u′w ′.30 Correspondingly, the scaling
laws of the two overlap regions of the cospectra, φuw(kx, z),
would be k−1/2

x and k−5/3
x laws, respectively, with smaller scales

in the far-outer region depicting the classical k−7/3
x law.81–83

We observe that only for the case C19
0 n05k4/7

c , we can cap-
ture the theoretical scaling laws of the shear stress spectra in
the inner and outer wall regions. Case C09

0 n2k4/7
c , even though

retains the k−1/2
x and k−5/3

x laws in the near wall region, depicts
strong deviation from the k−5/3

x , k−7/3
x scaling laws in the outer

layer. However, the overdissipative models, cases C16
0 n2k4/7

c

and C17
0 n1k4/7

c , cannot even predict the first overlap region,
illustrating an incorrect slope of what seems to be closer to
k−3/4

x rather than the expected k−1/2
x , even though the interme-

diate/small scale laws, k−5/3
x , k−7/3

x , are captured quite well.
This incorrect k−3/4

x scaling will be elaborated upon further
in Sec. IV C 2. Additionally, in all models except for the
case C19

0 n05k4/7
c , the normalized streamwise energy spectra

and cospectra at different heights do not collapse well in the
overlap regions specifying that they do not scale well with u2

τz
specifically in the near-wall region.

2. Near wall correlations

To understand the counter-intuitive behavior of the dissi-
pative Smagorinsky models in affecting the larger length scales
of the Reynolds stresses [manifested by the fact that models
C16

0 n2k4/7
c , C17

0 n2k4/7
c predict a k−3/4

x scaling law instead of a

k−1/2
x law of the shear stress spectra as seen in Figs. 13(a) and

13(c)], we try to investigate how the u, w wall correlations of
the near-wall organized structures are affected by the para-
metric variation of SGS models. The plots of Euu, Eww , φuw

at two different normalized heights ξ = 0.02, 0.025 for the
cases C16

0 n2k4/7
c , C09

0 n2k4/7
c , Nσk4/7

c , C19
0 n05k4/7

c are shown in
Fig. 14. It was observed that well correlated scaling laws in the
near wall corresponding to φuw ≈ E1/2

uu E1/2
ww exist only for the

models C16
0 n2k4/7

c , C17
0 n1k4/7

c , C19
0 n05k4/7

c . For the correlated
regions in the overlap, if Euu ∼ A1u2

τk−l
x , Eww ∼ A3u2

τk−m
x , and

φuw ∼ A13u2
τk−n

x , one would require n = (l + m)/2.33

We list the observed scaling laws for Euu, Eww , and φuw

for the first overlap region (corresponding to a k−1
x region of

the streamwise spectra) for the models C16
0 n2k4/7

c , C09
0 n2k4/7

c ,

C17
0 n1k4/7

c , Nσk4/7
c , and C19

0 n05k4/7
c , together with the correla-

tion coefficient ρuw =A13/(
√

A1
√

A3), in Table III. The correla-
tion coefficient is expected to be high for well correlated mod-
els. Table III confirms that the models C16

0 n2k4/7
c , C17

0 n1k4/7
c ,

and C19
0 n05k4/7

c depict the presence of the near-wall corre-
lation, with the value of the correlation coefficient roughly
at ∼ 83%. Although the models C16

0 n2k4/7
c and C17

0 n1k4/7
c do

reveal the wall correlation, the scaling laws for the co-spectra
are incorrect, which, as can be seen from Fig. 14(a) and Table
III, comes from the incorrect Eww spectra. It is the model
C19

0 n05k4/7
c that not only produces the near-wall correlations

but also gives the correct scaling laws for the correlations.
Interestingly, for the model C09

0 n2k4/7
c , although it produces

the correct scaling for the co-spectra, the near-wall correla-
tion does not exist due to, again, a wrong scaling of the w
component.24

Table III also lists the range of kxz values where
the scalings characteristic to the region were observed. Note
that it is kxz < 10−1 for the three models C16

0 n2k4/7
c , C17

0 n1k4/7
c ,

C19
0 n05k4/7

c and 10−1 < kxz < 100 for the model C19
0 n05k4/7

c .

FIG. 14. Near wall u, w spectral correlation scale com-
paring Eχχ (kx , z) = Euu(kx , z), Eww (kx , z),φuw (kx , z)
all normalized with u2

τ z at normalized wall distance ξ
= 0.02, 0.025. (a) Case C16

0 n2k4/7
c , (b) case C17

0 n1
σk4/7

c ,

(c) case C09
0 n2k4/7

c , and (d) case C19
0 n05k4/7

c . Solid
line—z/H = 0.02; dashed line—z/H = 0.025.
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TABLE III. Near wall u, w scaling laws, their correlation coefficient in the first overlap region (k−1
x region of

Euu spectra), and wavenumber range for four different parametric variations of the wall-damped SGS model
C16

0 n2k4/7
c , C17

0 n1k4/7
c , C09

0 n2k4/7
c , and C19

0 n05k4/7
c .

Case Euu scaling Eww scaling φuw scaling Observed kxz range ρuw = A13/
√

A1
√

A3

C16
0 n2k4/7

c k−1
x k−1/2

x k−3/4
x kxz < 10−1 0.8243

C17
0 n1k4/7

c k−1
x k−1/2

x k−3/4
x kxz < 10−1 0.825

C09
0 n2k4/7

c k−1
x k−1/4

x k−1/2
x kxz < 10−1 · · ·

C19
0 n05k4/7

c k−1
x k0

x k−1/2
x 10−1 < kxz < 100 0.8333

The correlations that we see in the near-wall spectra are
associated with the attached inactive motions as discussed
in Sec. IV C. The case C19

0 n05k4/7
c predicts the correct

upperbound of the active wall normal motions, kxz ∼ 100,
corresponding to λx/z ∼ O(101), while the other three
cases C16

0 n2k4/7
c , C09

0 n2k4/7
c , C17

0 n1k4/7
c overpredict the size of

these active motions by a decade, kxz∼ 10−1, or λx/z ∼
O(102), in addition to producing an incorrect scaling in cases
C16

0 n2k4/7
c , C17

0 n1k4/7
c and uncorrelated u, w motions in the

case C09
0 n2k4/7

c . We must mention that the case C19
0 n05k4/7

c

predicts the Euu ∼ k−1/2
x scaling for such large-scale eddies,

kxz ∼ 10−1, λx/z ∼ O(102), see Table IV, consistent with the
previous observations at high Reynolds numbers,9,75 which
are also well correlated, with the same correlation coefficient
of ∼83% as the k−1

x law. As discussed in Sec. IV C, we sur-
mise that the�1/2 scaling law might possibly be a modification
to the k−1

x scaling with certain correction factors as predicted
in Ref. 30, but also caution the readers that careful analysis
needs to be performed at larger computational domains before
we can conjecture on the possible implication of the �1/2
region.31

D. 2D spectra

While the analysis of 1D spectra depicts the inner and
outer layer streamwise length scales of the eddies affected by
SGS dissipation, they cannot predict the structure of the eddies
being influenced by the LES dissipation. The potential of 2D
spectra in identifying eddy structures has been long realized
since the last two decades in simulations30–32,84 and exper-
iments.28,29,70,85 In the above studies, 2D spectra have been
utilized to estimate the streamwise and spanwise length scales
of the near wall eddies consistent with Townsend’s attached
eddy hypothesis4 in wall bounded turbulence.

Figure 15 shows the 2D premultiplied streamwise energy
spectra, kxkyEuu(kx, ky, z), in the plane of streamwise-
spanwise wavelengths for different SGS models as in cases
C16

0 n2k4/7
c , C09

0 n2k4/7
c , C19

0 n05k4/7
c . Similar to the 1D spectra,

the effect of explicit filtering has been found to be inconse-
quential to the analysis of active and inactive length scales

and their scaling laws and has been omitted from discus-
sion from here onwards. We compare the spectral results with
kc = 4/7 since this value of cutoff together with our model
case C19

0 n05k4/7
c gives the best results for the log-law of the

wall.

1. Inner layer

The theoretical scaling laws of λx, λy in the inner layer
(ξ < 0.1) can be only observed in case C19

0 n05k4/7
c with

the active motions corresponding to λy ∼ λx extending from
the minimum resolved length scale to λx ∼ 10z at the spec-
tral ridge, beyond which the attached inactive motions initiate
with the power law scaling [see the schematic in Fig. 7(b) in
Sec. IV C for details], as can be judged from Fig. 15(d).

For overdissipative cases like C16
0 n2k4/7

c , Figs. 15(a) and

15(c), or underdissipative cases like C09
0 n2k4/7

c , Fig. 15(b),
the near-wall dynamics are heavily influenced. For the case
C16

0 n2k4/7
c , the linear scaling λy ∼ λx of the active motions

persists for scales λx ∼ 100z, and the power law “A” scaling
corresponding to p = 3 (attached inactive motions) is com-
pletely absent. However, traces of 1/3 law “B” scaling can still
be found for cases C16

0 n2k4/7
c , C17

0 n1k4/7
c . It is suspected that the

absence of a conspicuous inactive eddy region is responsible
for the smaller regime of k−1

x in the 1D u spectra [see Fig. 10(a)]
which also occurs at larger length scales than anticipated. For
the case C09

0 n2k4/7
c , however, even though the scaling corre-

sponding to the active motions is present at λx < 10z, none of
the power-law “A,” “B” (p = 3) scalings corresponding to the
inactive motions can be conspicuously identified in the near
wall region.

2. Outer layer

However, at the outer-layer (ξ > 0.1), the models
C16

0 n2k4/7
c , C19

0 n05k4/7
c predict the square-root scaling, λy/z

∼ (λx/z)1/2 corresponding to the longer-narrower structures
(λx > λy). The square-root scaling analysis in the outer layer
would be similar to that of the inner layer, mainly due to simi-
lar dynamics of long term dispersion of background turbulence
(see Refs. 30 and 31 for details). This is, however, not the case

TABLE IV. Near wall u, w scaling laws, their correlation coefficient for the large-scale motions (k−1/2
x region of

Euu spectra), and wavenumber range for the case C19
0 n05k4/7

c .

Case Euu scaling Eww scaling φuw scaling Observed kxz range ρuw = A13/
√

A1
√

A3

C19
0 n05k4/7

c k−1/2
x k0

x k−1/4
x kxz < 10−1 0.8365
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FIG. 15. Premultiplied 2D streamwise energy spectra
kxkyEuu(kx , ky) in the streamwise-spanwise wave num-
ber plane, λx/z and λy/z, normalized with inertial length

scale z, λx,y = 2π/(kx,y). (a) Case C16
0 n2k4/7

c , (b) case

C17
0 n1

σk4/7
c , (c) case C09

0 n2k4/7
c , and (d) case C19

0 n05k4/7
c .

All plots are at 5 different heights ξ = z/H = 0.015,
0.025, 0.1, 0.375, 0.5, with lighter line color shades with
increasing ξ . All contours are at 0.125 times of max-
imum. Dashed black line—λy/z ∼ λx/z; dotted black
line—λy/z ∼ (λx/z)1/2; chain dotted black line—λy/z
∼ (λx/z)1/3.

for the model C09
0 n2k4/7

c , where no such square root scaling
is distinctly identified, as we move into the far-outer layer.
It is perhaps not hard to associate this absence of the square
root scaling in the outer-layer with the absence of a proper
�5/3 law cascade of the 1D spectra, all indicating towards the
underdissipative effects.

In order to understand the implications of the presence
or absence of the scaling laws as described above, we also
plot all the u, v , w energy and u′w ′ shear-stress spectra at
z/H = 0.15 in Figs. 16(a)–16(c), obtaining qualitatively sim-
ilar structures as in Ref. 39 [reproduced here in Fig. 16(d)].
While the case C19

0 n05k4/7
c displays a qualitatively similar pic-

ture with the DNS of the channel flow simulations in Ref. 39,

with some minor discrepancies arising due to a difference
in the domain size, the situation is quite different for cases
C16

0 n2k4/7
c , C09

0 n2k4/7
c . Due to the overdissipative effects of the

case C16
0 n2k4/7

c , for scales λx > 10z, the linear scaling per-
sists for the u spectra, and also w spectra erroneously extends
to these large scales, implying that the 3D active turbulent
motions become artificially large for case C16

0 n2k4/7
c , extending

to scales where the two dimensional inactive motions should
have been present. For the underdissipative case of C09

0 n2k4/7
c ,

the scale λx ∼ 10z corresponds to the long-wavelength cutoff
for the w spectra, which is physically consistent from the per-
spective of the size of the active motions. The 1/3 scaling law,
however, is absent.

FIG. 16. [(a)–(d)] Premultiplied 2D streamwise energy
spectra kxkyEξ ξ (kx , ky, z) (ξ = u, v,w) and cospectra
kxkyφuw (kx , ky) in the streamwise-spanwise wave num-

ber plane at z/H = 0.15. (a) Case C16
0 n2k4/7

c , (b) case

C09
0 n2k4/7

c , and (c) case C19
0 n05k4/7

c . Premultiplied spec-
tra of Euu, Evv, Eww , and φuw are plotted in progres-
sively lighter shades of gray. The contours in (a)–(d)
are at 0.4 times of their maximum. Dashed black line—
λy/z ∼ λx/z; chain dotted black line—λy/z(λx/z)1/3.
(e) Premultiplied 2D energy spectra and cospectra of
channel flow taken from the work of Jiménez39 repro-
duced with permission from J. Jiménez, Annu. Rev.
Fluid Mech. 44, 27–45 (2012). Copyright 2012 Annual
Reviews. http://www.annualreviews.org.

http://www.annualreviews.org
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FIG. 17. Premultiplied enstrophy spectra kxkyEωω
(kx , ky, z) in the streamwise-spanwise wavenumber plane

for different cases C16
0 n2k4/7

c , C09
0 n2k4/7

c , C19
0 n05k4/7

c .
(a) Contour level of 25% of the maximum. (b) Contour
level of 50% of the maximum. ξ = z/H is the normal-
ized distance from the wall. Solid line—case C16

0 n2k4/7
c ,

dashed line—case C09
0 n2k4/7

c , chain dotted line—case

C19
0 n05k4/7

c .

FIG. 18. Sketch (not to scale) of the
near wall dynamics for (a) overdissipa-
tive (C0 = 0.16, n = 2), (b) underdissi-
pative (C0 = 0.09, n = 2), and (c) opti-
mally dissipative (C0 = 0.19, n = 0.5)
wall-damped Smagorinsky SGS mod-
els. Attached eddies are illustrated using
hairpin vortices. I, II, and III are the
representative eddies at different wall
locations.

The above observations are the indication of a requirement
of an optimal SGS dissipation in our spectral-element LES
models, which can be further illustrated if we look into the
2D premultiplied enstrophy spectra (kxkyEωω = kxky〈ω̂ω̂

∗〉,
where ω̂ is the Fourier transform of vorticity) in Figs. 17(a)
and 17(b). Enstrophy is often considered as a surrogate for
the turbulent dissipation,84,86,87 and in our case, it is a good
representative of the total (i.e., Kolmogorov + SGS) dissi-
pation in the LES models. For cases C09

0 n2k4/7
c , C19

0 n05k4/7
c ,

the smallest scales of motion in the near-wall dissipation (ξ
= z/H = 0.025) are λx < 10z. In the case C16

0 n2k4/7
c , a severe

near-wall dissipation hinders the growth of small scale dissi-
pative eddies, and the smallest resolved scales are λx & 10z
that correspond to the range of attached inactive motions. In
the outer layer (ξ = z/H = 0.75), the dissipation charac-
teristics for cases C16

0 n2k4/7
c , C19

0 n05k4/7
c collapse, confirming

the correct �5/3 cascade seen in Figs. 10(a), 10(c), and 10(d),
while for the case C09

0 n2k4/7
c [Fig. 10(b)], the largest scales

involved in the outer-layer dissipation are much smaller than

in the cases C16
0 n2k4/7

c , C19
0 n05k4/7

c , revealing an inefficient
cascade.

In general, before we conclude, a brief summary of the
behavior of the wall-damped Smagorinsky based SGS mod-
els with different parameters is presented in this paragraph.
Figure 18 is a qualitative sketch (picture not to scale) of the
attached eddies (hairpin vortices attached to the “wall” at an
acute angle ∼10◦) obtained from the spectral information as
discussed above. The representative hairpin-like eddy I is of
length scale λx � 10z, and hence at the height of z, it would
essentially represent a horizontal two-component u, v flow33

corresponding to attached inactive motions. Eddies of scale
λx ∼ O(z) (representative eddies II, III) are responsible for
the 3D active motions. For an overdissipative model, the eddy
viscosity results in the mixing of the eddies near the wall and
attenuation of the small scale phenomenon. This inflicts an
artificial abundance of the active eddies of the O(z) scale, and
hence the 3D motions (averaged over all eddies) extend to
longer scales as seen in Fig. 16(a), which is schematically

TABLE V. A summary of the behavior of different SGS models C16
0 n2k4/7

c , C17
0 n1k4/7

c , C09
0 n2k4/7

c , C19
0 n05k4/7

c
compared against 9 important trends in physical and spectral domains that represent inner and outer layer physics.
(i) LLM—Log Layer Mismatch, (ii) TS trends—scaling trends in the vertical variation of turbulent stresses near
the wall at z/H < 0.1, (iii) k−1/2

x scaling of the streamwise spectra near wall, (iv) k0
x scaling of the wall-normal

spectra near the wall, (v) λy ∼ λ
1/2
x scaling of premultiplied 2D streamwise spectra at the outer layer, (vi) k−5/3

x
scaling of the velocity spectra and cospectra at the outer layer, (vii) SR location—location of the spectral ridge
where linear to power law scaling transition occurs for premultiplied 2D streamwise spectra, serving as a barrier
between active and inactive motions.

LES models LLM TS trends Euu ∼ k−1/2
x Eww ∼ k0

x λy ∼ λ
1/2
x �5/3 scaling SR location

C16
0 n2k4/7

c Yes Incorrect No No Yes Yes Incorrect

C17
0 n1k4/7

c Yes Incorrect No No Yes Yes Incorrect

C09
0 n2k4/7

c Yes Incorrect No No No No Incorrect

C19
0 n05k4/7

c No Correct Yes Yes Yes Yes Correct



075105-15 T. Chatterjee and Y. T. Peet Phys. Fluids 29, 075105 (2017)

illustrated in Fig. 18(a). This also weakens the vertical near-

wall motions (w) manifested by the attenuation of w̃ ′2 in Fig. 6.
An underdissipative case [Fig. 18(b)] actually allows for much
smaller eddies near the wall to be sustained, but an ineffi-
cient forward energy cascade in the outer layer [see Fig. 10(c)]
results in a pileup of energy at smaller length scales. For the
optimally dissipative case [Fig. 18(c)], the size of the near wall
eddies represents the correct distribution of the length scales
of the near-wall eddies33 which eliminates the presence of
“artificial viscous sublayer,” in concordance with Townsend’s
attached eddy hypothesis.4 Table V further summarizes the
scaling laws and the observed correct or incorrect physics of
the inner and outer layer eddies with the different parameters
of the Smagorinsky-based SGS models.

V. CONCLUSION AND FUTURE WORK

The current studies involving the different LES models
not only provide the design procedure for the reliable yet
inexpensive SGS models in the spectral element framework
but also focus on another important aspect—the behavior of
the eddies in wall-turbulence, under the influence of artificial
length scales introduced by Smagorinsky based subgrid-scale
eddy viscosity closures.

We found that the LES results are extremely sensitive to
the parameters of the subgrid-scale closure model, and the
Smagorinsky based SGS models need to be “optimally tuned”
to retrieve the correct flow physics. Our results have been fur-
ther strengthened by the grid sensitivity analysis (Appendix C)
which also manifests the robustness of the proposed LES
models designed in the spectral element framework. It has
been observed that the elimination of the effect of artificial
SGS filtering length scales in our LES model is possible by
reducing the growth rate of the filter scale lf near the wall by
reducing n while simultaneously increasing C0 slightly, to a
threshold, beyond which the physical length scales become
dominant, which helps produce the correct turbulent statistics
and spectra. The results, on the other hand, are not significantly
affected by the explicit filtering in the near-wall modeling,
except, perhaps, the amount of log layer mismatch and the
spectra in the largest scales of motions near the wall. The
exact reason is still not entirely understood and requires fur-
ther investigation, but it can be attributed to the amount of
removal of the near-wall dissipative scales through filtering.
Based on our computations, the model C19

0 n05k4/7
c is advo-

cated to be the best model used for LES in a spectral element
framework.

Investigating the physics of the “artificial length scales” of
the different LES models helps build the fundamental under-
standing of the inner and outer layer eddies as well as the
effect of the SGS closure on the formation of “eddy viscos-
ity” sub-layer. The principal findings in the current work are
summarized below, by the following points:

(i) Apart from influencing the fine-scale dissipative eddies
and the energy cascade (�5/3 law) near wall, the
Smagorinsky based SGS models are also found to affect
the larger scales as well, e.g., the active and inactive
motions.

(ii) Overdissipation of the Smagorinsky SGS models
affects the length scales of the 3D active motions in the
inner layer, making them as large as the 2D inactive
ones possibly due to “mixing of eddies.” The absence
of conspicuous regions of inactive motions can be cor-
related with a smaller, erroneous, regime of the k−1

x
law.

(iii) Underdissipation of SGS models results in the larger
scales of motion at the outer layer not loosing enough
energy through the transfer mechanism (SGS dissi-
pation). This is supposedly reflected in the incorrect
scaling and hence dynamics of the attached inac-
tive motions near the wall, supporting the fact that
the outer-layer motions also influence the near-wall
structures.

(iv) Both the effects of over- and under-dissipation in
Smagorinsky based models detrimentally influence the
near-wall organization, more severely through the ver-
tical energy, or w spectra, resulting in incorrect u, w
correlations near the wall. For over-dissipation, the
effect of incorrect w spectra is also seen in extending
the length scales of 3D active motions.

(v) In the outer layer, the correct prediction of �5/3 scal-
ing law as seen in the u spectra is inherently related
to capturing the square-root scaling of 2D u spectra
corresponding to dispersion of eddies in background
turbulence.

These outcomes indicate that “optimum LES dissipation,”
both in the inner and the outer layers, is required for correctly
resolving the large-scale flow physics in neutral ABL flows.
Consequently, it is reasonable to conclude that the log-law
of the wall, the location of k−1

x law, and the scaling of the
active and inactive motions near the wall are closely associ-
ated with the proper SGS dissipation in every region of the
flow. From a practical viewpoint, our study shows that the
“optimal dissipation” can still be obtained from a fine-tuned
standard wall-damped Smagorinsky model, without having
to use more expensive dynamic models. We believe that the
present static model is not limited to neutral atmospheric
boundary layer flow simulations but can be further extended
to flows with variable aerodynamic roughness, flows past
wind turbine arrays,48,56 and potentially generalized to atmo-
spheric flows with varying atmospheric conditions, includ-
ing stable and unstable stratification invoking Monin-Obukov
similarity.3,15

The present paper not only provides design criteria for
LES-NWM models in wall bounded turbulence from the per-
spective of fundamental physics but also opens up a plethora
of research possibilities for studying the eddy structures in
wall-bounded turbulence, using the LES model. In a spec-
tral element framework, where the discretization errors are
inherently small, the SGS closure and the near-wall mod-
eling are the two approximations that determine, to a large
extent, the impact of artificiality on the numerical results. As a
future work, this well-controlled “artificial laboratory” frame-
work provides an opportunity to study the flow in a larger
computational domain and analyze if certain large structures
in the inner and outer layers can be sustained in isolation,
without the presence of other structures. The Smagorinsky
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model, as well as other static dissipative models like Vreman,88

WALE,89 or Sigma90 model, can be specifically used to induce
“user-controlled” artificial dissipation in “shear-dominated” or
“rotation-dominated” regions masking out certain regions or
certain eddies in the flow. This radical approach would help
provide further insights into the physics of large scale struc-
tures (LSM’s, VLSM’s) in high Re wall-turbulence, which
are still relatively poorly understood unlike the mean statis-
tics in turbulence. Studies of wall-bounded turbulence along
the similar lines have been initiated by Jiménez et al.,30,91 who
masked out certain regions of the DNS flow, or by Hwang32 and
Rawat et al.,92 who used the wall-resolved LES for quenching
smaller scales of motion, but all these studies were limited to
low and moderate Reynolds numbers. A significant challenge
lies in extending these ideas to much larger Re, as in ABL
turbulence, and to moderately complex geometries. The pro-
posed spectral-element LES methodology in conjunction with
near-wall modeling can become a useful tool in realizing this
challenge.
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APPENDIX A: ELEMENTAL LEVEL FILTERING

For the explicit filtering approach in near-wall modeling,
we use the modal approach of Boyd,93 see also Refs. 52 and
53. With the modal filtering technique, decomposition of the
variable u into the modal basis is sought,

u(ξi) =
N∑

k=0

ûkφk(ξi), (A1)

where ξi, i = 0, . . . , N represent the Gauss-Lobatto-Legendre
(GLL)43 clustering of the nodes inside each element, and the
modal basis {φ},

φ0 =L0(ξ), φ1 =L1(ξ) and φk =Lk(ξ)−Lk−2(ξ), 2 ≤ k ≤N ,
(A2)

forms the hierarchical set of functions constructed from the
Legendre polynomials Lk(ξ). The bubble functions φk are

designed to preserve the homogeneous Dirichlet boundary
conditions since φk(±1) = 0 for k ≥ 2 (refer to Ref. 93). The
inhomogeneous Dirichlet boundary conditions are satisfied by
the low order polynomials φ0, φ1. The mapping between the
nodal Lagrangian basis and the modal representation, defined
by Eq. (A1), can be cast into the matrix form

u = Φû. (A3)

Low-pass filtering is performed in the modal space
through a diagonal matrix T whose components are T0 = T1

= 1 (satisfying C0 inter-element continuity) and Tk = f (k; k̄)
= 1/(1+(k/k̄)

γ
), 2 ≤ k ≤ N . The function f (k; k̄) is an attenua-

tion function and k̄ is the threshold value such that Tk |k=k̄ = 1/2
(see Fig. 19). Parameters k̄ and γ determine the precise shape of
the filter transfer function. Decreasing k̄ attenuates the large
scale contents of the filtered velocity ũi, while decreasing γ
smoothens the transfer function more towards a non-projective
filtering as seen in Figs. 19(a)–19(c). The filtering process in
one dimension is given by

ũ = G ∗ u = ΦTΦ−1u. (A4)

Extrapolation to a 3D field can be achieved from 1D filter
by a fast tensor product application.94 In the current calcula-
tions, we define kc = N − k̄ as the number of modes being
cut-off and use γ = 12 (sharp spectral filter).

APPENDIX B: STRESS BOUNDARY CONDITIONS
IN WEAK FORMULATION

The viscous term in the weak form of the Navier-Stokes
equations can be expanded using an integration by parts as
follows:(
ν∇

2u, v
)
=

(
2ν ∇∇su, v

)
= 2ν

∫
Ω

∇∇
su · vd3x

= −2ν
∫
Ω

∇
su · ∇svd3x +

∫
Ω

2ν ∇
(
∇

su · v
)

d3x,

(B1)

where u is the velocity vector and v is a vector in the test space
used for Galerkin projection. Here, ∇s is the symmetric part
of the gradient tensor given as 1

2

(
∇() + ∇ ()T

)
, and fluid stress

in Ω is σij −
1
3σkkδij = −2ν∇su (Newton’s linear stress-strain

rate relation). In the derivation of Eq. (B1), we have used the
fact that from the divergence constraint ∇ · u = 0, one has

∇2u = 2∇∇su.

FIG. 19. Filter transfer function T (k)

= (1 + (k/k̄)γ )
−1

. (a) γ = 12, (b) γ = 6,
and (c)γ = 2. �, k̄ = 2; ��, k̄ = 3; –.–4,
k̄ = 4; –?, k̄ = 5; –�, k̄ = 6 | T (k̄) = 1

2 .
The total number of modes kmax = N = 7,
corresponding to GLL nodes = 8 (used
in our simulation).
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From the Gauss divergence theorem, volume integral in
Ω can be replaced by a surface integral in ∂Ω,∫

Ω

2ν ∇
(
∇

su · v
)

d3x =
∮

∂Ω
2ν∇su · nvdS, (B2)

where n is the outward unit normal to the surface ∂Ω. With
SGS modeling, the molecular kinematic viscosity ν in Eq. (B2)
will be replaced by the total viscosity νtotal which is the sum of
molecular and turbulent viscosities, νtot = ν + νt . The closure
of the integral of the 2νtot∇

su term in ∂Ω is then related to the
wall shear stress,∮

∂Ω
2νtot∇

su · nvdS =
∮

∂Ω
τmodel
w · nvdS, (B3)

provided by the near-wall model. For stress-free boundary
conditions, the obvious outcome is ∇su = 0.

APPENDIX C: GRID SENSITIVITY

The behavior of the wall-damped Smagorinsky model is
documented for different grids (refer to Table VI) in the cur-
rent section. Two methods of grid refinement or coarsening
have been considered with respect to the baseline grid: (i) ver-
tical, where the element sizes in the horizontal directions are
unaltered; (ii) global, where element sizes in all directions
are altered while preserving the aspect ratio of the elements.
In both cases, the polynomial order of the basis functions,
that is, the number of collocation points per element, is left
unchanged. While the vertical grid variation has been applied
to all parametric variations of the wall-damped models, the
additional global variation of the grid has been tested only for
the overdissipative model C16

0 n2k4/7
c and our best performing

optimally dissipative model C19
0 n05k4/7

c . The variation of the
filter length scale Cs for different wall-damped Smagorinsky
models with grid refinement is shown in Fig. 20. The fig-
ure clearly demonstrates that the behavior and the near-wall

growth of the coefficient are still preserved for different grids.
The slow growth of Cs versus z/∆ in C0 = 0.19, n = 0.5 model
results in a correct scaling of the filter scales with the grid
size ∆ showing similar dependence as in a scale-dependant
model,9 while the sharp saturation towards the constant value
in the models with n ≥ 1 makes the variation of Cs with the
grid in the near-wall region erroneously less sensitive.

Figure 21 illustrates the variation of normalized stream-

wise velocity gradient Φ(z) and streamwise variance ũ′2/u2
τ

with wall distance z/H on different grids. The plot illus-
trates that the physics imposed by the subgrid scale model
in the wall-damped Smagorinsky model is more dominant
than that imposed by the grid itself. As expected, for cases
C16

0 n2k4/7
c , C09

0 n2k4/7
c , C17

0 n1k4/7
c , where the artificial viscous

sub-layer is present, we do observe that refining or coarsening
the grids compared to the baseline grid does shift the loca-
tion of the viscous sub-layer towards or away from the “wall,”
which is more prominent in the cases of global grid varia-
tion, without attenuating or amplifying the peak of the LLM
in Φ(z). This is consistent with the presence of the LES diffu-
sion imposed by the grid size and confirms that the location of
“log-layer mismatch” is indeed tied to the grid.15,20 However,
in the case C19

0 n05k4/7
c , where the log-layer mismatch has been

eliminated, the near-wall region is fairly unaffected by the grid
variation. In this respect, case C19

0 n05k4/7
c is least sensitive to

the grids even for second order moments (ũ′2).
To complete the process of performing grid-sensitivity

tests, we further plot the energy spectra at different grids in
order to illustrate how the variation of physics at multiple
scales of motion is affected by the grid sizes. For the nor-
malized 1D u, w energy spectra and uw cospectra (Fig. 22),
the scaling laws of the wavenumbers for different paramet-
ric models C16

0 n2k4/7
c , C17

0 n1k4/7
c , C09

0 n2k4/7
c , and C19

0 n05k4/7
c

remain reasonably invariant with the grid coarsening or

TABLE VI. The grid parameters for LES of atmospheric boundary layer. bs is the baseline grid. {v1, bs, v2}—
grid sensitivity test in the vertical direction. {g1, bs, g2}—grid sensitivity test in the global domain. Computational
domain: 2πH × πH × H.

Case Ne
x × Ne

y × Ne
z Nxyz ∆x/∆z ∆x/∆y ∆z/z0

v1 30 × 20 × 20 4.19 × 106 4.188 1.33 23
bs 30 × 20 × 24 5.02 × 106 5.0265 1.33 27
v2 30 × 20 × 30 6.27 × 106 5.8543 1.33 32

g1 20 × 13 × 16 1.47 × 106 5.0265 1.33 18
bs 30 × 20 × 24 5.02 × 106 5.0265 1.33 27
g2 45 × 30 × 36 16.87 × 106 5.0265 1.33 40

FIG. 20. Filter length scale coefficient Cs of vari-
ous Smagorinsky models on different grids: (a) case
C16

0 n2k4/7
c , (b) case C17

0 n1k4/7
c , (c) case C09

0 n2k4/7
c ,

and (d) case C19
0 n05k4/7

c . Vertical grid variation: dashed
line—v1, solid line—bs, chain dotted line—v2. Global
grid variation [for (a) and (d)]: ©—g1, �—g2. See
Table VI for grid details.
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FIG. 21. Normalized streamwise velocity gradient
Φ(z) = κz/uτdU/dz [(a)–(d)] and resolved streamwise

variance ũ′2/u2
τ [(e)–(h)] for various Smagorinsky mod-

els on different grids. [(a) and (e)] Case C16
0 n2k4/7

c ; [(b)

and (f)] Case C17
0 n1k4/7

c ; [(c) and (g)] case C09
0 n2k4/7

c ;

[(d) and (h)] case C19
0 n05k4/7

c . Vertical grid variation
(spectral elements): dashed line—v1, solid line—bs,
chain dotted line—v2. Global grid variation [for (a) and
(d)]: ©—g1, �—g2. See Table VI for grid details.

refinement with respect to the baseline grid. Similarly, in the
2D premultiplied streamwise energy spectra reported for cases
C16

0 n2k4/7
c , C19

0 n05k4/7
c in Fig. 23, it is illustrated that the spec-

tral shape (sizes of eddies) at various locations from the wall

is preserved for different grids as well. Our best performing
model C19

0 n05k4/7
c demonstrates the least sensitivity in the scal-

ing and shape of the spectra, even for the global variation of
the grids g1, g2 compared to the baseline grid. Furthermore,

FIG. 22. Normalized streamwise energy spectra, Euu
[(a)–(d)], wall-normal energy spectra, Eww [(e)–(h)], and
cospectra φuw [(i)–(l)] vs kxz for various parameters of
the wall-damped Smagorinsky model on different grids.
[(a), (e), and (i)] case C16

0 n2k4/7
c ; [(b), (f), and (j)] case

C17
0 n1k4/7

c ; [(c), (g), and (k)] case C09
0 n2k4/7

c ; [(d), (h),

and (l)] case C19
0 n05k4/7

c . Vertical grid variation: dashed
line—v1, solid line—bs, chain dotted line—v2. Global
grid variation [for (a) and (d)]: ©—g1, dotted line—g2.
See Table VI for grid details.
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FIG. 23. Premultiplied 2D energy spectra contours
kxkyEuu(kx , ky, z)/u2

τ in the λx , λy plane for two different
parametric variations of the wall-damped Smagorinsky
model on different grids. z/H = 0.02 (black), z/H = 0.875
(gray). [(a) and (c)]—Case C16

0 n2k4/7
c ; [(b) and (d)]—

case C09
0 n05k4/7

c . Contours at 6.25%, 12.5%, 80% of
maximum. Vertical grid variation: dashed line—v1, solid
line—bs, chain dotted line—v2. Global grid variation [for
(a) and (d)]: ©—g1, dotted line—g2. See Table VI for
grid details.

it is worth noting that overdissipative models like C16
0 n2k4/7

c ,
where the “artificial viscous sublayer” is present, are affected
stronger by the global grid variation and consistently manifest
a larger variation in spectra, while preserving the shape and
the scaling laws.
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80J. Jiménez, “Turbulent flow over rough walls,” Annu. Rev. Fluid Mech. 36,
173–196 (2004).

81G. G. Katul, A. Porporato, S. Shah, and E. Bou-Zeid, “Two phenomenolog-
ical constants explain similarity laws in stably stratified turbulence,” Phys.
Rev. E 89, 023007 (2014).

82S. G. Saddoughi and S. V. Veeravalli, “Local isotropy in turbulent bound-
ary layers at high Reynolds number,” J. Fluid Mech. 268, 333–372
(1994).

83G. G. Katul, A. Porporato, C. Manes, and C. Meneveau, “Co-spectrum
and mean velocity in turbulent boundary layers,” Phys. Fluids 25, 091702
(2013).
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