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1 | INTRODUCTION

Large-eddy simulation (LES)'? is becoming an increasingly popular technique since the last 3 decades for the study of
moderately and high Reynolds number turbulent flows. In LES, the dynamically important large-scale structures of the
flow are resolved, whereas small-scale phenomena having a supposedly universal behavior are modeled. The LES method-
ology represents a viable alternative to direct numerical simulations (DNSs) whose computational cost is prohibitively
high at high Reynolds numbers.>* The LES allows many important flow features to be captured without resolving the
smaller scales whose effects on the large scales are accounted for by subgrid-scale models.

The computational methodologies that were most frequently realized in the context of LESs until now include
strong formulation using finite-difference or mixed finite-difference/pseudospectral methods,*® collocated global spectral
methods,”® and finite-difference formulations.”® The application of weak formulation using spectral element methods
(SEMs) to LES is relatively less explored, although several works in this domain published since the last decade must be
noted.!'8

A traditional approach to LES is to generate the differential equations governing the spatio-temporal evolution of
large-scale structures, which can be obtained from the Navier-Stokes equations by applying a low-pass filter. The filtering
of nonlinear convective product term does not commute with the convection of filtered quantities, which gives rise to an
additional term in filtered Navier-Stokes equations called subgrid-scale (SGS) or subfilter-scale term requiring closure.
Common approaches to SGS closure include the dissipative eddy-viscosity models, eg, the classic standard or dynamic
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Smagorinsky (DS) models'®?' or the more recent high-pass filtered subgrid model,”* where the SGS dissipation allows
for the dominant forward cascade of energy. More sophisticated approaches based on scale-similarity models,**** mixed
models,* generalized mixed scale-similarity®® “inverse models,” rational LES models,” and approximate deconvolution
models® have also been proposed in an effort to reconstruct the information of energy spectrum lost by filtering. Tradi-
tionally, with these approaches, the low-order finite-difference discretization of the Navier-Stokes equations was used,
where the coarse grid acts as an implicit low-pass filter."»%

An alternative approach to LES is to work directly with the unfiltered equations resolving the large-scale energy con-
taining eddies and using techniques/models to control the dynamics of the small scales (often based on explicit filtering).
In such cases, the SGS term does not explicitly appear in the Navier-Stokes equations exempting additional closure mod-
eling. However, the action of smaller scales must be represented by modifying or regularizing the Navier-Stokes equations.
Several approaches based on mathematical theories of LES have been developed.**3? For the cases of weak solutions of
the Navier-Stokes equations (as in SEM), which have not yet testified the uniqueness of solutions in 3D, the regularization
proposed in the LES models essentially selects the physically relevant solutions.*=** Any regularization method designed
for LES should guarantee convergence to this physically relevant “dissipative” solution®® and preserve the spectral accu-
racy if used with spectral-based schemes such as SEM. The use of SGS models in energy-conserving codes like low-order
finite-volume methods provides the only pathway for turbulent kinetic energy to leave the resolved modes and enter the
unresolved modes by the correct dissipation characteristics.** However, since the regularization models for LES do not
satisfy energy conservation, their application in low-order methods have not been explored so far, with the exception of
monotone integrated large-eddy simulation approach®*-*¢ based on conservative flux correction algorithms and specifi-
cally designed for use with compressible simulations. The regularization approaches are usually simple to implement,
and they have shown good agreement with the benchmark results.’”*

It is interesting to note that nearly all of the regularization-type LES approaches were originally designed for the
stabilization of higher-frequency (low-energy content) modes arising from the nonlinear convective term.?**** These
approaches include the spectral vanishing viscosity approach by Tadmor,* the hyper-viscosity or the p Laplacian (p > 5/4)
term VP of Lions,* and the modification of the Navier-Stokes equations in other works.******* In SEM, an effective approach
which can be used for stabilization of the Navier-Stokes equations, is by explicit filtering of the solution variables. It must
be mentioned that such approaches in LES that use direct explicit filtering of solution variables are quite well-known
in compressible LES community*®“*® but are not commonly explored in the incompressible flows. A concise review on
regularization models can be found in the monograph by Layton and Rebholz.*

The 2 approaches commonly used for SEM filtering are nodal based and modal based.'>"* In nodal-based methods,
filtering projection operators are devised directly from the interpolation polynomials,*® whereas the modal-based meth-
ods design filtering coefficients in the orthogonal polynomial space.” The main challenges in the design of filtering for
SEM lies in satisfying the boundary conditions for the filtered quantities with spectral accuracy and maintaining an
interelement continuity in the filter. The filter-based stabilization approaches have been successfully adopted by the SEM
community, see, for example, the work of Levin et al®* who incorporated the modal filtering procedure® to control the
growth of nonlinear instabilities in SEM of ocean flows while maintaining spectral accuracy. Fischer and Mullen® devel-
oped an interpolating polynomial-based nodal filter in SEMs, where the filtering is applied to velocity variable at each time
step for stabilization purposes. The interpolation-based filter tested for asymptotic analysis indicated that a mild attenua-
tion of the highest mode was sufficient to stabilize flows in medium-high Reynolds number while retaining interelement
continuity and spectral accuracy for the interpolation errors.>

Using filter-based regularization (FR) as an LES model is in line with the regularization ideas.***** Filter-based regu-
larization models for LES have been used in practical applications that involve rather complex geometries’>* and have
shown good agreement with experiments or other DNS/LES. However, no detailed comparison for the filtered-based reg-
ularization LES models with SGS models is available in the literature. Consequently, a thorough understanding of the
performance of the filtered-based regularization model in the SEM formulation and its effect on small-scale motions
becomes imperative and is the focus of the current paper.

The present goal involves the validation of the filtering-based regularization LES model in comparison with a
well-established scale invariant DS model also developed in the current SEM code. Given the fact that the DS model
is computationally more expensive, we particularly aim to explore whether the incorporation of such computationally
intensive SGS models provides any advantages in SEM in the framework of LES in wall-bounded flows at moderately high
Reynolds numbers. It is important to note that the low-dissipation low-dispersion characteristics of spectral element dis-
cretization allow one to decouple the subgrid-scale errors or the filter modeling errors from the numerical errors, which
is hard to achieve in low-order methods (see the review by Meneveau and Katz* for details).
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The results are expected to provide more insights to filtering-based regularization model and the effects of suppressing
high-mode information on the large-scale turbulence. For the current study, we use modal-based Boyd filters (with dif-
ferent transfer functions)'>**** for the filter-based model as well as the explicit filtering in DS test case. We also provide
some insights on the choice of the filter strength and the number of highest modes to be attenuated in the filtering-based
model on the basis of the comparison of channel flow LES statistics with the available DNS data.

2 | NUMERICAL METHOD

The 3D incompressible Navier-Stokes equations, along with boundary conditions, are solved in a weak formulation by
means of a weighted residual technique with a Galerkin projection, with inner products in functional spaces using
exponentially accurate higher-order SEMs.>*%62 The spectral element discretization used in the current study employs
collocated methods that involve the same Legendre polynomial spaces for pressure and velocity interpolants, known
as Py — Py formulation, developed as a higher-order splitting technique by Tomboulides et al,* with minimum mass
conservation errors.

In SEMs,3%62 the decomposition of the computational domain consists of subdividing Q = Q U dQ into E nonover-
lapping adjacent rectilinear elements such that Q = Ulege. Each Q, is the image of a reference subdomain under a
mapping x°(r) € Q, —» r € Q, with a well-defined inverse r(x) € Q — x € Q,, where the 3D reference subdomain is
Q = [—1,1)3. Scalar functions within each local element Q, are represented as the mth-order tensor product polynomials
on a reference subdomain €. In 3D, velocity and pressure functions in the spectral element method in each element can
be expressed as follows:

m m m

u(r, ra, r3)|g = 2ZZufjkﬂ'm,i(”l)ﬂm,j(rz)ﬂm,k(r3), r.r,rs € [-1,17, 1)

i=0 j=0k=0

where, 7, ;(11), 7m j(r2), Tmi(r3) are the Lagrange polynomial-based interpolants of degree m.> Because of the invertible
mapping between €, and Q, there exists a one-to-one correspondence between the nodal values of u(x, y, 2)|q,, p(x, ¥, 2o,
and reference subdomain values u(ry, 12, 3)|o p(¥1, 2, 3)| o, and the coefficients ufj . pfj . are the local nodal values of u|q,,
plo,, respectively, in the nodal-based formulation. The subscripts i, j, k, running from 0 to m within each element for xyz
directions, correspond to the roots of the Legendre polynomials, known as the Gauss-Lobato-Legendre (GLL) points. The
local to global mapping of data is carried out using a Boolean connectivity matrix that preserves interelement continuity.
Matrix operators in SEM are carried out using computationally efficient tensor/Kronecker products.”*** The time
discretization of Navier-Stokes solver in the current spectral element code Nek® involves third-order backward differ-
ence/extrapolation scheme with operator integrator factor splitting—based characteristic time stepping. The code is fully
dealiazed using the 3/2 rule,***” the Helmholtz problem for velocity is solved using preconditioned conjugate gradient
method, and the pressure solver uses the iterative generalized mean residual solver method in Krylov subspace.

3 | LES MODELS

In this section, we describe 2 LES models used in the current study: DS model***! based on a traditional eddy-viscosity
approach to LES involving the low-pass filtered equations and an explicit filtering-based regularization model similar
to that in the work of Fischer and Mullen*® (but using a modal-based approach) used directly in conjunction with the
unfiltered equations as a test LES model.

3.1 | Models based on filtered equations

In traditional LES, the “implicitly filtered Navier-Stokes equations” are obtained by invoking a low-pass filter to the
Navier-Stokes equations with G as a convolution kernel in a domain Q. A filtering operation, for example, on a velocity
variable, is thus defined as

Wx, 1) = / Ox - O,
Q
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with &, x € Q, where Q is the domain of the flow. It is easy to see that this filtering operation accounts for commutativity

with linear operators. The commutation error occurs at the nonlinear term of the NS equation, 5% = W,u; — wu;,
~ ~ ~ ~ SGS
ou; . ou; 10p* ~ 0%T; oz

; ()

i

—+i— = v
ot 0x; p 0x; 0x;0x; 0x;

which shows up as the divergence of 75 in the momentum equations (see Equation (2). Here, F; is the filtered forcing
term in the ith direction, and E‘ is defined by

1 ~, 1~ )
-pf=-p+-u;. 3
P AL (3)
Errors due to the noncommutativity of the filtering and the boundedness of the domain also occur at the boundary of
the domain Q, in the absence of a high enough wall resolution (boundary commutation errors), which can be addressed

by near-wall modeling but are beyond the scope of the current paper.'* In eddy-viscosity models, one aims at modeling

the SGS stress tensor Tists in the filtered NS equations,*****6%%° ysually using the gradient of the filtered velocity ;3>
1 ~
SGS SGS
Tij - §Tkk 5ij = —ZV[SU, (4)

where v, is the eddy-viscosity and S ; = 1/2(0u;/0x; + 0ii; /0x;) is the filtered strain rate. In Smagorinsky models,®*-21:6570

the interior closure problem of v; modeled as v; = (C;A)? |§|, where |§| =14/ 2§l~ jgi ;» A is the characteristic grid filter width,
essentially boils down to a physically consistent design of Cs, the Smagorinsky coefficient.

3.1.1 | Dynamic Smagorinsky model

The DS model® aims at estimating the Smagorinsky coefficient C; using a least-squares approach of Lilly** from the scale
invariance C; on 2 different filter scales: a grid filter with the width of A (usually implicit based on grid discretization) and
an explicit coarser test filter with a typical width of A ~ 2A. In incompressible formulation, divergence-free condition
of velocity must be satisfied after the filter is applied. In SEMs, an additional requirement to the filter is that the func-
tion interelement continuity must be preserved. In the present spectral element DS model, this can be implemented by
using the modal tensor-product approach of Boyd* for explicit filtering (which guarantees that function continuity and
divergence-free condition of #; are satisfied) along the lines of previous literature.'>!3

With the modal filtering technique, decomposition of the variable u into the modal basis is sought,

N
wE) = ) (&), (5)
k=0
where &;,i =0, ... , Nrepresents the GLL clustering of the nodes, k represents the number of polynomial modes, and the
modal basis {¢}, defined as
$o=Lo(®), ¢ =Li(§) and ¢ =L(&)—Lr2(), 2<k<N, (6)

forms the hierarchical set of functions constructed from the Legendre polynomials Li(£). Although the Legendre poly-
nomials are normalized, satisfying Ly(+1) = (—1)¥, the bubble functions ¢, on the other hand, are designed to preserve
homogeneous Dirichlet boundary conditions since ¢;(+1) = 0 for k > 2. The inhomogeneous Dirichlet boundary condi-
tions are satisfied by the low-order polynomials ¢, ¢;. The mapping between the nodal Lagrangian basis and the modal
representation defined by Equation (5) can be cast into the matrix form as u = ®il.

The low-pass filtering is performed in the modal space through a diagonal matrix T whose diagonal components are
To = T, = 1 (satisfying Cy interelement continuity) and Ty = f(k; k.),2 < k < N. The function f(k; k.) is an attenuation
function that decreases with increasing k, and k, is the cut-off value such that Tk lk=k, = 1/2. The filtering process in one
dimension is given by

U=G*u=0Td 'u 7

Extrapolation to 3D field can be achieved from 1D filter by a fast tensor product application.®
The filtering attenuation function is given by

1 k <N. (8)

T, = ————— 2 <
itk ST
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FIGURE 1 Filter transfer function T(k) = (1 + (k/k.)") L. A,y =12;B,y =6, C,y = 2. — k. = 2; ——, k. = 3; —. — \k. = 4, —%, k. = 5; -]
k. = 6|T(k.) = % The total number of modes k., = N = 7 corresponding to Gauss-Lobato-Legendre nodes = 8 (used in our simulation)

The exponent y in Equation (8) determines the shape of the transfer function, with higher values making the filter
function approach a “sharp spectral” filter, with strong attenuation after k > k. and weak attenuation before k < k., see
Figure 1. In our numerical implementation, we utilize y = 12 and k. = N — 4 for the DS model, close to sharp filtering
ideas of the original DS model.*® For N = 7 employed here, k. = N — 4 corresponds to k. = 3 and is also close to the value
of k. = (N + 1)/2 suggested by Blackburn and Schmidt.'?

With DS model, the subtest stress anisotropy can be written as

ses _ 1.sGs 2SS
Tij - ngk 61] = _Z(CSA) |S|Slja (9)
Ly = Tl.SJ,GS - fl.stS = WU, — W, (10)

where L;; is the resolved part of the stress tensor associated with the scales of motion between the test scale and the grid
scale.” The closure of the L equation can be given as

1
L — ngkaij = 2CiM;;, 11)
where
My = A%|S|S; — A?|S]S,;. (12)

The least-square estimate obtained from Equation (11), Q = (L;; — %kaéi i —2C2M; j)z results in a scale invariance of
the Smagorinsky coefficient obtained as
_ 1 {LyM;)

2 (M;;M;;) '

Evaluating M;;/A? instead of M;; from Equation (12), we can calculate a local time-dependent value of CsA instead of
C; at every time step directly from Equation (13) without an explicit definition of A in the SGS model. In the current
implementation, while solving for turbulent channel flow, which has homogeneous streamwise (x) and spanwise ()
direction, a planar averaging in the x — z direction is performed in the numerator and denominator of (C;A)? evaluated
from Equation (13) along the lines of Blackburn and Schmidt.'? Finally, an ad hoc limit of (C;A)? is imposed by clipping
all the negative values. These 2 additional operations ensure that homogeneity is brute forced in the X, z directions and
the values of (C;A)? obtained from Equation (13) do not assume negative signs, which otherwise can potentially lead to
instability.

C? (13)

3.2 | Regularization model based on unfiltered equations

Regularization models, as discussed above, are based on regularization of unfiltered equations that essentially acts
through artificially dissipating the small viscous scales and removing the information of such (unresolved) structures
from the flow so that the “dissipative” solutions***"""’? are naturally favored.

In the current SEM, we consider the modal explicit filtering of primitive variables of the NS equations for regularization.
The filtering was originally developed using interpolation techniques in nodal framework for stabilization of unsteady
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FIGURE 2 Filter transfer function for the regularization model in Equation (14). A, T(k) vs mode k for different « = 0.01(x),
0.025(0), 0.05(C). k; = 2; B, T(k) vs mode k for different k; = 1 (), 2 (x), 3 (*). @ = 0.01; C, The contour of T(k)|x-y in @ — k; parametric
space [Colour figure can be viewed at wileyonlinelibrary.com]

incompressible simulations based on Py — Py_, formulation,®** cutting off only the highest polynomial mode. In the
current work, the filtering has been adopted for Py — Py formulation in LES, with a capability of cutting more than
one mode.

The modal filter can be cast along the similar lines as in Equations (5) and (6), with the only difference being in the
shape of the filter. In Py — Py formulation, both the velocity and pressure are filtered at each timestep of the simulation.
The filtering attenuation function is quadratic in nature and can be given as

k—N+k\*
Tk=1—a<T>, N—-ks+1<k<N, 14)
with Tp = Ty = 1 and T} forming the diagonal of the filter-transfer matrix T. In the nodal framework, the 1D filter-transfer
function can be defined as ®T®~! (3D filter can be achieved from a 1D filter by tensor product application®), with it
being a function of parameters a, k. The free parameter o determines the amplitude of the filter attenuation, with a =
1 corresponding to a sharp cut-off, whereas ks denotes the number of highest modes that are filtered. In the current
regularization model, we use smooth filters with « = 0.01 — 0.05 and k; = 1 — 3. The shape of the filter transfer function
with mode numbers k at different parameters a, kf can be found in Figure 2.

4 | NUMERICAL SETUP

To benchmark the performance of the regularization LES model described in the previous section, we perform LES simu-
lations in a turbulent channel flow with 2 different grid resolutions for a moderately high Reynolds number Res = 20 000,
where Reynolds number, Re; = U,,6/v, is based on bulk mean velocity U,,, a half channel width §, and a kinematic vis-
cosity v (the corresponding Reynolds number based on skin friction velocity is Re; = 1000). The computational domain
in the current work is 876 X 26 X 3xé in streamwise, wall-normal, and spanwise directions, respectively, along the lines
of moderately high Re simulations in the works of Hoyas et al”®* and Lee and Moser.”* The different resolutions are gen-
erated by the h refinement of SEM while keeping the polynomial order fixed at N = 7. The horizontal streamwise (x) and
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TABLE1 Numerical setup for channel flow large-eddy simulation
for different grid resolutions

Resolution N7 x Ny X N7 N, XNy XN, N (y*<10)

1 60 X 18 x 20 361 X 97 x 121 2
2 70 % 20 x 30 421 x 121 x 181 4
DNS7# —— 2304 X 512 x 2048 ~10-20

Abbreviation: DNS, direct numerical simulation.

TABLE 2 Grid resolution in wall plus units for Res = 20 000(Re, = 10000).y™* resolution:
subscript w is for wall, ¢ is for inviscid core

Resolution Axy. — Axp,, Az, Az, AVi, . AViaow AVpin. AViaxe

min

1 26.37 8771 3023 98.68 1.8 6.0 19.51 63.7
2 23.05 7518 20.15 65.78 1.64 5.37 17.86 58.31
DNS7# 10.9 10.9 4.6 4.6 0.019 0.019 4.5 4.5

Abbreviation: DNS, direct numerical simulation.

spanwise (z) directions have been uniformly discretized with the elements, whereas wall normal y € (-6, §) direction
has been discretized with the clustered elements near the wall (using a hyperbolic sine stretching). For the present LES
computations, the number of elements and the number of grid points used in the channel flow LES for all the test cases
are shown in Table 1. Here, N7 are N; are, respectively, the number of elements and the number of grid points in the ith
direction, where i = x, y, z. N; indicates the number of grid points above the wall that has been used in the region y* < 10.

Moreover, LESs with 2 different grid resolutions have been performed in the current study, with the grid parameters
summarized in Table 1 and resolution in wall units (normalized by 6, = v/u,) documented in Table 2. As can be seen from
the design of the grids in Table 1, the near-wall resolution is such that the number of grid points in the viscous sublayer
Ny is less than 5, which corresponds to coarsely resolved LES. This low near-wall resolution has been chosen purposely to
better illustrate the effect of filtering in the regularization LES model on the results. With finer resolutions, the effect of
filtering would be less conspicuously pronounced. Although DS LESs in SEM have been previously applied in the context
of wall-resolved LES" with N; > 10; in the current work, we restrict DS model to the same coarse grids as the filter-based
models, thus presenting a more stringent test for the spectral element LES simulations.

The LESs (cases 1 and 2) have been run until the statistical stationarity was achieved (until flow-through time
tUm /Ly = 50), after which statistics were collected for additional time of tU,, /L, = 100. The time stepping of DS model,
compared to the FR model, is Atpg ~ %AtFR to ensure numerical stability. In addition, the DS model also requires more
operations per time step for model-related computations on top of the basic Navier-Stokes solver, resulting in an overall
computational cost for the DS model being slightly more than doubled as compared with the FR model (see the appendix
for details regarding the algorithmic complexity and computational time of the LES models used).

The boundary conditions for the channel flow are periodic in the streamwise and spanwise directions, and no-slip
boundary conditions are incorporated for the top and the bottom walls in the vertical direction.

For the current LES computations, the regularization model and the DS model will be validated with the channel flow
DNS results™ at the corresponding Reynolds number Re, = 1000. For the FR technique, we have tested filter weights
a = 0.01 — 0.05 and 3 different choices for the cutoff wavenumber in the filter function (the number of filtered modes)
kr = 1,2,3. The complete list of cases run for the current LES computations at 2 different grid resolutions is presented
in Table 3. As can be seen from the Table 3, along with the filtering-based model with varying a, k7, and DS model, we
have also performed the simulations with « = 0 corresponding to a coarse DNS with no filter, in an effort to decouple the
effects of filtering from that of projection (due to a coarse grid) in the LES framework.

5 | RESULTS AND DISCUSSIONS

The mean streamwise velocity and streamwise Reynolds stress are compared for 2 different grid resolutions and bench-
marked against the DNS data in Figure 3. As expected, the finer grid element resolution of 70 X 20 x 30 yields a better
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TABLE 3 Different cases of numerical simulations run for the
Reynolds number Re; = 20 000 channel flow at 2 different grid
resolutions. Case I is a coarse, unresolved direct numerical simulation
(no model); Dyn. Smag. refers to the dynamic Smagorinsky model

Case a kr

I 0 -

II 0.01 1

III 0.01 2

v 0.01 3

\Y% 0.025 2

VI 0.05 2)
Dyn. Smag. - -

30 T r 15 T T
LM —DNS -LM — DNS .
= a =001,k =1, 60 x 18 x 20 =a=0.01,ky =1, 60 x 18 x ?0
+a=0.01,kf =1, 70 x 20 x 30 v +a =0.01,k; =1, 70 x 20 x 30.
+dyn. Smag, 60 x 18 x 20 -~dyn. Smag, 60 x 18 x 20
20 [+ dyn. Smag, 70 X 20 X 30,00 u s - 10 %-dyn. Smag, 70 x 20 x 30
+ e ~ '
~ £
&)
10 5t
0 0 . . ?
10' 107 10° 10' 107 10°
+ +
Yy Yy
(A) (B)

FIGURE 3 Temporally averaged A, mean normalized velocity Ut = U/u, and; B, streamwise Reynolds stress u,,,;/u? vs y* at Res = 20 000
for resolutions 60 X 18 X 20, 70 X 20 X 30. The presented results are for a filter-based model, @ = 0.01, k. = 1, and dynamic Smagorinsky model
at 2 different large-eddy simulation resolutions, compared against direct numerical simulation results of Lee and Moser (LM-DNS)”* [Colour
figure can be viewed at wileyonlinelibrary.com]

agreement with the DNS data than its coarser 60 X 18 x 20 counterpart, and only the results of the finer resolution will be
presented hereafter.

The mean streamwise velocity, velocity gradient, and statistics of turbulent Reynolds stresses at Re; = 20 000 are shown
in Figures 4, 5, and 6. All the plots on the left show the effect of the variation of the filter amplitude «, for fixed k. = 2,
whereas the plots on the right show the variation of the filter modes k. for a fixed value of @ = 0.01. Both the plots on the
left and on the right contain the results from the DS model as well as the validation DNS data.” It must be noted that at
coarse wall resolutions, the models are unable to capture the correct velocity gradient dU/dy (U here is the temporally
and horizontally averaged mean velocity), and hence, the friction velocity scale u, = \/ﬁ /p. Normalization of mean
streamwise velocity with u, annihilates the errors in capturing the viscous sublayer, as seen in the Figures 4A and 4B. The
error in u, can be explicitly observed in the upper bound of y* = yu, /v scale, where a lower value of u, (underresolved)
would be reflected in a lower value of yi ..

For the mean streamwise velocity as in Figures 4A and 4D, an interesting phenomenon observed is that in spectral ele-
ment methods, the DS model at moderate wall resolutions behaves strikingly similar to the coarse DNS model (@ = 0).
Furthermore, for the range of @, kr used in our filtering models, the sensitivity amongst the models for various filter ampli-
tudes « is not conspicuously seen compared with the models with various filter modes ky. What is however worthwhile
to note is the presence of prominent logarithmic trends of the mean streamwise velocity (wider extent of a flat trend of
y*dU* /dy™) in the filtering models similar to DNS, especially in models with k. > 2, which are not seen in DS or coarse
DNS. Moreover, in the filtering models, the log region is shifted up with higher modes of filtering k;. In the logarithmic
regime, U™ ~ x~!In(y*) + B for smooth walls, and U* =~ 1 In(y*) + B — AU™ for rough-walls with AU* > 0 increas-
ing with wall-roughness (see the work of Flack et al’”® and the review by Jiménez’). The behavior of the filtering models
with different k; is somewhat similar to the rough-wall trends but now only with AU* < 0, when compared with the DNS
profile. For a reference, we note that AUT = —3.32, —3.66, —3.98 for filtering with a = 0.01, 0.025, 0.05, respectively, with
fixed ky = 2. For the models with different number of filtered modes k;, the variation in the shift AU* is conspicuously
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stronger, with AUT = -2.05, —3.32, -5.01, for kr = 1,2, 3, respectively, with fixed @« = 0.01. It is worth noting that the
mean-velocity statistics in Figure 3A at different resolutions also display a similar phenomenon indicative of the fact that
the coarsening of grids behaves similarly to an “explicit filtering.” In this sense, it can be speculated that explicit filtering
in the current LES models acts as a “negative roughness” by removing small-scale fluctuations from the near-wall region,
the point which will be further illustrated by looking at streamwise energy spectra.

The similarity in the behavior of the coarse DNS and DS models is further noticed in the plots of the second-order
turbulent statistics normalized with u? (Figures 5 and 6), although some discrepancies can be observed in streamwise
and, especially, spanwise stresses. In both these fluctuating components, the DS model provides better agreement with
the resolved DNS™ compared with the coarse DNS, which indicates the fact that, although their behavior is generally
similar, the presence of the SGS model expectedly manifests the benefits over its absence. The behavior of the filter-based
models is generally different from that of the coarse DNS and DS. In all the stresses, filter-based models tend to provide
a better agreement with the DNS in the upper log layer and the outer layer while consistently showing worse behavior
in the near-wall region. It is interesting to note that all the models do a reasonable job in capturing the trends of the
Reynolds shear stress uv,,;s as seen in Figure 6C, indicating that the Reynolds shear stress are least sensitive to the effects
of underresolution and SGS modeling. From our results so far, we can hypothesize that, while filter-based models seem to
show the overdissipative trends, by providing excessive filtering in the near-wall layer and affecting the near-wall statistics
more severely, the coarse DNS and DS models show the underdissipative trends, especially in the log layer and outer layer,
where insufficient amount of dissipation results in an incorrect energy transfer from the larger to smaller eddies and
detrimentally effects the log layer and outer layer statistics. These points will be further corroborated in the analysis of
the streamwise energy spectra in the next section.

5.1 | 1D spectra: Res=20000

At high Re flows, high-fidelity experiments,””” as well as emerging high fidelity LES/DNS simulations,’** presented a
. . . -1 -5/3 . .
strong evidence of the universal forms of streamwise energy spectra (eg, k;* and k, "'~ laws, k; is the streamwise wave
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number). The work of Nickels et al”® has further suggested that only at very high Reynolds number, Re, > 5000, can
a decade long extent of k;! law can be expected. For moderately high Reynolds number, Re; = 20000 (Re, ~ 1000),
the extent of the inverse law should be supposedly very small. The LES models with k; > 2, as well as with & ~ 0.05,
manifest that a half-decade long region of k;! law of one dimensional normalized streamwise energy spectra E,;, (ky)/(u2y)
aty™ < 50, which is supposedly an artefact of excessive filtering. While commenting on the k! law is debatable, what
is still interesting to note is the presence of —5/3 Kolmogorov law *%*#! of the energy cascade in the outer layer, which
can be observed only in the filtering models. The spectra of coarse DNS, as well as the Smagorinsky model, is quite
similarly marked by the complete absence of the —5/3 law of the inertial scales even at regions further from the wall
¥t ~ 0(10%-10%). A closer look at Figure 7 also shows that excess filtering (a = 0.05,k = 2; « = 0.01, k = 3) affects the high
wavenumber (smaller length scales) energy content most severely in the near-wall/log-layer region, while it preserves the
correct physical trends in the outer layer signal. This is also evidenced by the qualitative picture of the spatial structure in
log layer y* ~ 20 in Figure 8, where smoother streaky structures and reduced small-scale motions are observed with the
filter-based model « = 0.01, k = 3 (excessive filtering) than with the other models. This leaves a room for hypothesizing
the fact that excessive filtering might actually be damping scales more severely in the near-wall region in contrast to the
DS model, where the mixing length scales supposedly become smaller near the wall promoting less diffusion.® However,
in the outer layer region, the dissipation of the filter-based models acts positively by removing energy from larger scales
of motion and providing a path for the energy transfer to the smaller scales, resulting in improved scaling law predictions
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FIGURE 7 Variation of 1-dimensional normalized streamwise energy spectra E,, (k,)/(u2y) over normalized wavenumber k,y for different
large-eddy simulation models. A, Coarse direct numerical simulation (no model, a = 0); B, Dynamic Smagorinsky; C, a = 0.01,k; = 1;
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and log-layer behavior with the filter-based models. However, these findings need to be further corroborated by additional
studies before a justification is presented.

6 | CONCLUSION AND FUTURE WORK

In the current paper, a comparison of the filtering-based regularization model with the DS model and with the unfiltered
coarse DNS has been demonstrated using moderate wall resolutions in SEM. The coarse unfiltered DNS was found to
behave similar to DS LES but distinctly different from the filter-based models. The main differences between the 2 groups
of models can be summarized in the following facts: (i) the near-wall behavior of the turbulent stresses and the shift in
the mean velocity profile were better predicted by DS and the coarse DNS models, whereas (ii) the outer layer statistics,
the log-law of the wall, and the Kolmogorov —5/3 cascade of the inertial scales were better predicted by the filter-based
models. It was therefore concluded that, while the filter-based models seem to provide excessive dissipation (filtering) in
the inner layer, the DS and coarse DNS models provide insufficient dissipation (underdissipation) in the outer layer. This
leaves room for the surmise that controlling the strength of the filter in the filter-based model might provide a reasonable
compromise between the 2 aforementioned effects. In our studies, the filters with « = 0.01 and ky = 1 and 2 seemed to yield
such a compromise and, overall, represented a competitive counterpart to the DS model. Further potential extension of
the current work might lie in designing variable strength filters for LES that reduce the filter strength and/or the number
of filtered modes with the distance from the wall, in line with the algebraic damping ideas in eddy-viscosity models.
For example, in Smagorinsky-based closures employed in wall-bounded turbulence, where v, = (CSA)2|§| is used as an
eddy-viscosity, both dynamic estimations' of Cy and wall-damped static models®* essentially rely on Cs being a function
of z (wall-normal coordinate) such as the “filter scale” CsA decays as we approach the wall. Analogous to wall damping,
a z dependence of the parameters a, k; of the filter-based model can be introduced, which would ensure a gradually less
amount of filtering towards the wall. The variable strength filter-based LES can be invoked at a negligible additional cost.

Finally, it is worth noting that, while coarse DNS and DS generally showed similar underdissipative trends, DS con-
sistently produced better results, especially in streamwise and spanwise turbulent stresses, since some amount of useful
dissipation is added by the DS model as opposed to no dissipation in the coarse DNS. It is possible that with minimally
dissipative high-order methods, higher coefficients are required with eddy-viscosity-type models to provide enough dis-
sipation, whereas the dynamic procedure was not able to provide a sufficiently high coefficient in the outer layer in this
context. This hypothesis however needs to be further tested.
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APPENDIX

COMPUTATIONAL COMPLEXITY OF LES MODELS

In this section, we document the computational complexity of the LES models (DS and FR) at each timestep added to the
already existing computational cost of solving the Navier-Stokes equations. We also compare the total computational cost
of the different LES solvers used.

In the following analysis, Ny, N;, Ng are the number of spectral elements in the x, y, z direction in a rectangular Carte-
sian grid, and m is the order of the polynomials (resulting in (m + 1)> GLL points per element). Table A1 illustrates the
computational cost per timestep of the different functions used in the 2 LES models. The cost of addition, multiplication,
assignment and copy operations per timestep is of the order ~ O(N,(m+1)3) floating point operations. The matrix multipli-
cation used for tensor product calculations® in filtering for both LES models and gradient operations (calculating S; ; from
velocity) in the DS model, are relatively expensive and have a computational complexity of ~ N, [3 X 2m + 1)] (m + 1)3.
Within each element, the dense matrix multiplication can be written as

Cnl><n3 = Anlxn2 X anxn3- (Al)

The 3D tensor product operation® is a conglomerate of 3 such consecutive matrix multiplications, with n; = (m + 1),
n, = (m+ 1),n3 = (m + 1) for x direction; ny = (m + 1),n, = (m + 1),n; = (m + 1) for y direction, multiplied
by n. = (m + 1) because of matrix concatenation; and n, = (m + 1)2,n, = (m + 1),n3 = (m + 1) for z direction.
The cost of matrix multiplication is thus O(nyn,n;) in the x,z direction, whereas it is O(n;n,nsn.) in the y direction.
Subsequently, the respective complexities in each element can be calculated as (2m + 1)(m + 1)3 in x, y, z direction. Note
that the 2m + 1 is a manifestation of (m + 1) multiplication followed by m addition in the innermost loop of matrix
multiplication. Subsequently, 1 filtering operation or one gradient operation of one variable over the whole domain has
a computational complexity of ~ N, [3 X (2m + 1)] (m + 1)3. The ratio of the complexity of DS to the filter-based model
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TABLE Al Cpgs, Crr are the computational complexities per timestep of the dynamic Smagorinsky and filter-based
regularization models normalized by N,(m + 1)* and added to the cost of solving the Navier-Stokes equations. N, is
the number of spectral elements, and m is the order of Legendre polynomials per element. See the definition of A, |§|
L;j, M;;, in Section 3. (i) is the 3D tensor product operations, and (ii) is the standard operations: addition,

multiplication, assignment, copy

Computation

CDS
D)9 x (6m + 3)
(ii)18

3% (6m + 3) + 81

CFR

1| 19 _
(ii) 49 -
o _ 1 (LyMy)
ST 3y 31 -
vi = (C;AP[S] )4 _
Filtering u, p - ()4 x (6m+3)
- (ii)12
Total 150m + 277 24 (m+1)
8
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= 7 ]
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S 65) .
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FIGURE A1 The ratio of the added computational complexity Cps/Crr (dynamic Smagorinsky and filter-based regularization) for
different Legendre polynomial orders m [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE A2 Total computational cost of DS and FR large-eddy simulation solvers in the spectral element
code Nek5000. Total time corresponds to the solver computational time to simulate 1.9T, (T, = 876/U,, is the
flow-through time), which requires 1000 steps for FR and 2000 steps for DS. Atps = 1/2Agg. All calculations
done on 256 processors, using 70 X 20 X 30 spectral element grid

Case m=5, Time/Timestep m=5, Total Time m=7, Time/Timestep m=7, Total Time
DS 6.3111E-01 s 1.26222E+03 s 1.48513E+00 s 2.97026E+03
FR 6.1333E-01 s 6.1333E+02 s 1.45359E+00 s 1.45359E+03
Ratio, DS/FR 1.03 2.06 1.02 2.04
Abbreviations: DS, dynamic Smagorinsky; FR, filter-based regularization.
can be given as Sos — 10m+277 ' hich is independent of the number of spectral elements and depends only on the order

Cpr  24(m+1)
of polynomials. Figure Al illustrates that % decays very slowly from ~ 7.57 to ~ 6.66 as the order of the polynomial
increases from 3 to 12. In Nek5000, a standard choice of the order of the polynomials is in the range of m ~ 6 — 9 for
performing DNS and LES simulations." In this range, the ratio of the added computational complexities for the 2 models
is roughly CC,—:E ~17.
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FIGURE A2 Time per timestep for dynamic Smagorinsky (blue, green) and filter-based model; & = 0.01, k; = 1 (red, magenta) for
different number of cores; 32, 64, 128, 256, for 2 different grid sizes 60 x 16 x 20 (o), 70 X 20 X 30 (+); and 2 polynomial orders, m = 5 and
m = 7 [Colour figure can be viewed at wileyonlinelibrary.com]

To complement the above analysis, we document the total computational cost of the 2 LES solvers in Table A2 and
Figure A2, taking into account the added number of operations because of the LES modeling and the reduction of time
step in the DS model due to stability restrictions. Table A2 shows that while the time per timestep is increased slightly in
the DS model compared to the FR model because of a higher computational complexity of the DS model as demonstrated
in Figure Al, the total computational cost of the DS solver is more than doubled compared to that of the filter-based
solver because of a reduction in timestep by 2 because of stability restrictions. This analysis was conducted by running
both models for a total of 1.9 flow through times. Figure A2 demonstrates the strong parallel scalability of both models,
showing, again, a consistent 2 — 3% increase in a computational time per timestep of the DS model as compared with the
FR model on different number of processors.
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