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Abstract
Optimalfish array hydrodynamics in accelerating phalanx schools are investigated through a
computational frameworkwhich combines highfidelity Computational FluidDynamics (CFD)
simulations with a gradient free surrogate-based optimization algorithm. Critical parameters relevant
to a phalanx fish school, such asmidline kinematics, separation distance and phase synchronization,
are investigated in light of efficient propulsion during an accelerating fishmotion. Results show that
the optimalmidline kinematics in accelerating phalanx schools resemble those of accelerating solitary
swimmers. The optimal separation distance in a phalanx school for thunniformbiologically-inspired
swimmers is shown to be around 2L (where L is the swimmer’s total length). Furthermore, separation
distance is shown to have a stronger effect, ceteris paribus, on the propulsion efficiency of a school
when compared to phase synchronization.

1. Introduction

Fish schools are known to provide hydrodynamic benefits to groupmembers when compared to solitary
swimming [1–3]. Phalanx schools, in particular, have been investigated through differentmethodswhich
include self-propelled rigid foils [4], self-propelled flexible foils [5], numerical simulations of undulating
swimmers [1, 6], andfish tank experiments [7, 8]. Recent investigations suggest that the phalanx group
swimming efficiency is sensitive to the separation distance between swimmers in the school [1, 9, 10], with
varying conclusions reached regarding themost beneficial swimming regimewith respect to separation distance.
For example, Hemelrijk’s et al [1] investigation of phalanx schools ofmullet-shaped fish in steadyflow revealed
that the propulsive efficiency of the group is higher than a solitary swimmer as long as the separation distance
within the school remains greater than or equal to onefish length.When the separation distance is smaller than
onefish length, the authors noted that the group’s swimming efficiency decreases below that of a steady solitary
swimmer [1]. Conversely, Li et al [9]notes that phalanx formations of red nose tetra fish have a high average cost
of transport when the separation distance is close to one fish length. Instead, from their simulations, a separation
distance of roughly half afish length could provide a 2% improvement in the group’s average cost of transport
when compared to a solitary swimmer, assuming steadyflow [9]. Another study, using an inviscidmodel,
showed that tightly packed phalanx schools of rigid airfoils, with roughly half a chord length of separation
distance, show a 5% improvement in the group steady swimming speed, when compared to a single airfoil [10].
This improvement is accompanied, however, by a 4% increase in the average cost of transport over that of a
single airfoil. The observed speed-up and a higher cost of transport both decrease as the separation distance
between the airfoils is increased until the system eventually approaches the single airfoil limit [10]. The preferred
separation distance in a school can depend on a range of different factors such as the swimming speed and/or
Reynolds number [8], and the phase difference between swimmers [11]. It remains to be the case, however, that
the group propulsive efficiency offish schools in general, and for phalanx schools in particular, is directly related
to the separation distance of swimmers within it.

Phase synchronizationwas likewise found to be important for phalanx schools, where, e.g. red nose tetra fish
showed a preference towards either in-phase or an anti-phase swimming over all other synchronizationmodes
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[7]. Several computational studies of a swimming fish pair demonstrated an increased stability in synchronized
configurations [6, 9, 12] (either anti-phase or in-phase). Furthermore, Dewey et al [13] observed that side-by-
side hydrofoils that oscillate out of phase result in an increased thrust, while in-phase oscillations reduce the total
power input.

A different, but nevertheless important, schooling parameter to consider is the swimmers’ gait [14]. Previous
investigations of phalanx schools using undulating flexiblefish-shape bodies rely on afixed kinematic gait based
on empirical data [1, 9, 11], which is often obtained by observing themidline envelope of real fish in steady
swimming [7, 15]. However, an optimized kinematic adjustment could result in improved swimming
performance through schoolingmechanisms such aswake capturing [16]. In fact, for swimmers to only
maintain their relative position in a school, kinematic adjustment is required [9]. Additionally, kinematic gaits
based on steady state swimmingmay not necessarily apply to unsteady swimming. Indeed, accelerating
swimmers have distinctively different hydrodynamic and kinematic behaviour than steady swimmers. For
example, a large survey of over 50 species of realfish revealed that accelerating fish consistently swimwith a
higher tail amplitudewhen compared to steady swimming [17]. Similar studies report that eels and bluegill
sunfish increase both their tail amplitude and undulation frequency during accelerationwhen compared to
steady swimming [18, 19]. Additionally, investigations of the force field on the body of a robotic tuna-shaped
swimmer revealed that during acceleration thunniform swimmers (such as tuna) generate a significant portion
of forward thrust using theirmain body andmay, consequently, adopt amore anguilliform-like bodymotion
[20].While linear accelerationmay have been investigated for single swimmers, little is known about the
collective behaviour of accelerating phalanx schools and the associated changes in kinematicmotion.
Accelerating collectivemotions play an important role inmany biological functions offish schools, such as an
escape frompredator, and also for the design of efficientmaneuvers for autonomous underwater vehicles.

While previous studies looked at the influence of various parameters on schooling performance in isolation,
the goal of the current work is to develop a holistic approach to an analysis of the schooling problem that
considers a variation of affecting parameters simultaneously, rather than consecutively. This will be
accomplished by casting a problemoffinding themost beneficial schooling strategy as a formal optimization
problem. Adiscussion of the advantages of using a formal optimization technique over a priori (nonrandomor
random) sampling can be found in literature [21–23]. In particular, it removes dependence on either an a-priori
user knowledge, or a random chance, in identifying ‘promising regions’, it provides a guarantee that the effective
configurationswere notmissed, and it yields critical information regarding the relative gains between different
adaptation strategies. By comparing optimumand sub-optimumconfigurations, we are able to elucidate on
hydrodynamical aspects of efficient schooling and identify physicalmechanisms, via which the efficiency
enhancement can occur in different schools by contrasting, for example, the adaptation strategies that tend to
maximize the useful work (or a group thrust performance) versusminimizing the total work (or the total energy
expenditure by the school). Finally, the developed optimization framework allows us to offer a unique
perspective regarding the link between stability and efficiency in a collective locomotion, a pressing question that
has been demanding answers for quite some time [9, 24, 25].

Formal optimization studies that aim to identify effective schooling configurations from a hydrodynamic
perspective are absent in the literature, althoughworks devoted to an optimization of a swimming performance
of a solitary swimmer can be noted [14, 23, 26, 27]. Some recent studies also considered the problemof control
to ensure that a swimmer can successfully follow a leader on a specified trajectory [16, 28, 29]. The current work
does not consider the effects of control, but rather is focused on identifying the hydrodynamically-optimum
maintained configurations, which can serve as targets for control strategies. Consequently, in the current study,
the relative position between the swimmers isfixed, a framework employed inmany recent studies offish
schooling [1, 13, 30–33].While the swimmers arefixed in place, the effects of destabilization by the resulting
fluid forces due to a swimmers’ interaction are implicitly taken into account, as such configurations also tend to
correlate with high total work, which is penalized in the optimization procedure.

We use our previously developed approach that couples an optimization algorithm to highfidelity spectral
CFD simulations [34], to allow for a coupled fish array hydrodynamics to be fully optimized in terms of their
midline kinematics, phase difference and undulation frequency. Three phalanx schools, with varying separation
distances, are presented to highlight changes in optimal behaviour depending on the compactness of a school.
The phalanx setups are also compared to an optimized solitary swimmer to highlight the differences between the
school and singlefish performance. The rest of the paper is organized as follows. In section 2, we describe the
physical and numericalmodeling of phalanx swimmers and the optimization cases set-up. Section 3 includes the
results of the optimization cases for both solitary and phalanx swimmers. Section 4 contains discussion and
interpretation of the results. Lastly, section 5 presents concluding remarks.
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2.Methods

2.1. Physicalmodel
The schoolingmodel introduced in the current study employs the following assumptions: (1) Fish relative
position in a school isfixed, (2)Allfish swimwith the same kinematics (albeit different phase angles), (3) Fish
self-propulsion is determined by the average of the fluid forces acting on each swimmer, (4) Fish is synchronized
in pairs, (5) Fish and schooling geometry are assumed to be two-dimensional.While these assumptions
inevitably lose some complexity of realisticfish schools [35–37], they provide a tractablemathematicalmodel to
be used in the current optimization study, which nonetheless keeps the essential physics of the problem as
exemplified bymany recent studies offish schooling hydrodynamics that employed similar assumptions
[1, 13, 30, 31, 33, 38].

The shape and kinematics of swimmers in the phalanx school ismodeled using a two-dimensional
approximation of a thunniform swimmer in the streamwise-lateral plane. The geometrical features of a single
thunniform swimmer are extracted from real fish data [39, 40], which allows us to specify the shape of the
symmetric left and right lateral cross-sectional body curves, ( )y x

l
s , ( )y x

r
s , at its static configuration [34, 41]. The

total dimensional length of a swimmer, L, is chosen to be 0.3 m tomimic the length of a soft robotic thunniform
swimmer prototype in thework of [39, 40]. Themidline kinematics of each swimmer in the school are described
by the travelingwave equation for thunniform swimmers [42, 43]:

( ) ( ) ( )w f= + + - +y x t c c
x

L
c

x

L
kx t, sin , 1m 0 1 2
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⎠
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⎦⎥

where y and x are the lateral and streamwise coordinates of themidline points, respectively, t is the time variable,
L is thefish length, c0, c1 and c2 are the zeroth-order, linear and quadratic wave amplitudes, k is thewave number
associatedwith the bodymotion,w is thewave frequency, andf is the phase. Biological investigations suggest
that thunniform swimming can be characterized by the following bodywave number relation [44],

p
l

=k
L

2
,

whereλ, the bodywave length, wasmeasured to be∼1.1. Consequently, wefixλ to be 1.1. Tofind a deformed
fish position at each time, wefirst compute the position of themidline from equation (1), and thenwe
reconstruct the lateral surfaces yl(x, t), yr(x, t) by shifting the cross-sectional segments orthogonal to themidline
while approximately conserving the body volume [34, 45].

Self-propulsion ismodeled by consideringNewton’s second law ofmotion for undulating swimmers, while
calculating the corresponding viscous and pressure forces directly from the fully-resolved simulations of the
fluid-body interactions:

( ) ( ) ( )= á ñm
d U t

dt
F t , 2x

wherem is themass of the fish,U(t) is thefish forward velocity and 〈Fx(t)〉 is the streamwise self-propelling force
acting on the swimmers averaged among the schoolmembers. This array-averaged force 〈Fx(t)〉 is defined as

∮( ) ( ) · ( )å sá ñ = - G
= G

F t
N

dn i
1

, 3x
k

N

k k
1 k

whereσk is the totalfluid stress tensor acting on the surface of the swimmer k, which includes viscous and
pressure contributions,Γk is the curvilinear boundary of the swimmer k,nk is the outer surface normal of the
swimmer k, i is the unit vector in the streamwise direction, andN is the number of swimmers. Only the
contribution of the streamwise force, 〈Fx(t)〉, i.e. thrust and drag, is considered in the propulsion law of
equation (2), and thereby the swimmer(s) are confined tomove in the streamwise direction and do not travel in
the lateral direction. Similar assumptions weremade in previous studies of both single and collective swimming
[31, 34, 46]. Taking the propulsion force for each swimmer to be an array-averaged force and restricting it to a
streamwise direction allows us to keep the streamwise and lateral separation distances, and the direction of
motion,fixedwithin the array, so that the specified phalanx geometries during a linear acceleratingmotion
could be studied.

2.2. Numericalmodel
The numericalmodeling in the current study follows themethod previously developed and validated in [34].
Fluid-body interactions of themodeled swimmer are solved by considering the Arbitrary Lagrangian-Eulerian
(ALE) formulation of the incompressible Navier–Stokes (NS) equation on amovingmesh [34, 47, 48]:
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where ρ,u= {ux, uy}, p,μ andw= {wx,wy} are thefluid density, velocity, pressure, dynamic viscosity and the
mesh velocity, respectively, while the derivative δ/δ t represents the ALE derivative. A high-order spectral
elementmethod (SEM) [48, 49] is used to solve theNS equations. In the SEM, a body-fitted elementmesh is
constructed, and the solutionwithin each element is represented by tensor-product polynomial functions
defined on a set of Gauss-Lobatto-Legendre (GLL) integration nodes [48, 49].

TheNewton’s propulsion law (equation (2)) is advanced implicitly by using the backward Euler scheme as

( )d
= + á ñ-U U

t

m
F , 5n n

x
n1

where δt is the time step and ( )á ñ = á ñF F tx
n

x
n is the propelling force acting on the swimmer(s) in the x direction at

a time t n. Implicit update is accomplished viafixed-point iterationwith Aitken relaxation [50] and typically
converges in 3–4 iterations to a set tolerance of 1× 10−4. Implicit treatment of theNewton’s propulsion law is
necessary to avoid the addedmass instabilities pertinent to incompressible fluid-structure interaction problems
[51, 52]. Further details regarding the numericalmethodology in the context ofmodeling of self-propelled
biological swimmers are found in [34]. Thefluid andfish density are both taken to be 1× 103 kg/m3,which
corresponds to a neutrally-buoyant swimmer. Dynamic viscosity of the fluid,μ, is set to 1× 10−3 kg/(m · s). The
mass of each swimmerm is specified as 0.8606 kg, which corresponds to the parameters of a soft robotic
thunniform swimmer prototype [40].

The computational domain for the solitary swimmer and for the phalanx school simulations is presented in
figure 1. For the solitary swimmer, the computational domain is a rectangle with dimensions 9.4L× 16L, with
thefish placed in the center of the domain and 1L away from the inlet. To simulate an infinite phalanx array, we
include twofish into the domain separated by the distance SDwhile accounting for the remaining fish via
periodicity in the lateral direction. The streamwise extent of the phalanx domain is the same as in the solitary
case, leading to a size of 9.4L× 2SD, with the leading edge of thefish array located, again, at 1L from the inlet, see
figure 1.Note that while periodic array simulations are possible with a single swimmer in the domain [53],
inclusion of at least two swimmers is required to study the effect of a phase lag. Thus, in the current setup, wefix
the phase of the left swimmer atf= 0, while the phasef of the right swimmer represents the phase lag. For a
single swimmer, a phasef= 0 is used. Consequently, we specifyN= 1 for a single swimmer, andN= 2 for the
school in equation (3).

We set theGLL node count asNx=Ny= 7, leading to the 6th order of the basis interpolating polynomial
functions. Fluid velocity at the fluid-body interface (surfaces yl(x, t), yr(x, t)) is set equal to the velocity of the
moving boundary, which is obtained fromdifferentiating the corresponding equations for yl(x, t), yr(x, t) in time
(See [34] formore details). A self-propulsion is handled by keeping the fish geometrical position fixedwhile
adjusting the inlet velocity at a time step t n to be equal to the self-propulsion velocityUn obtained from
equation (5). A pressure outflowboundary is used at the outlet. Symmetry conditions are used at the lateral

Figure 1.A schematic of the computational domain for (a) Solitary swimmer, (b)Phalanxfish school. ‘S’ stands for symmetry, ‘P’
stands for periodicity in lateral boundary conditions.
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boundaries for a solitary swimmer, while periodicity conditions are used at the lateral boundaries in the phalanx
schools to simulate an infinite array of swimmers. During the initial phase of the simulations, the fish and the
corresponding SEMmesh are deformed from their static configuration to the one corresponding to amidline
position of equation (1) evaluated at t= 0 as described in [34].

2.3.Optimization
The general optimization problem is stated as

( ) ( )f zmaximize 6

Î zsubject to ,n

where  f : n is the objective function, and z ä S∩ C is a vector of design parameters. The set Í S n

contains the n-dimensional search space and the set Í C n contains a set ofm� 0 inequality constraints, as
presented in [34, 54]. In the current work, the travelingwave amplitude coefficients, that is {c0, c1, c2}, the
undulation frequency f, and the phase lagfmake up the design parameters, z= {c0, c1, c2, f,f}. For a solitary
swimmer, the design parameterf is omitted.We restrict ourselves to a situationwhere all swimmers in a phalanx
school have the same kinematics (i.e. amplitude coefficients and undulation frequency), which justifies the
definition of averaged quantities within a school, such as in equation (3).

The set, S is given by:

( )f p

-
-
-

 
 
 
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L c L
L c L
L c L
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0 3,

0 2 , 7

0

1

2

with the 5th equation omitted for a solitary swimmer. In order to allow for only physically realizablemodes as
deduced frombiological data, the following constraint set,C, is imposed [39, 40, 46]:
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Thefirst two constraints ensure that the tail amplitude does not exceed 0.1 L, while the last two constraints
restrict themaximumbody undulation to under 0.1 L.

The group propulsive efficiency, η, is taken to be the objective function, f (z). The group propulsive efficiency
is defined as the ratio of a collective ‘useful’ energy gained, over the total collective work done by the swimmers
over a certain time period, which can be stated as

( )
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2
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2

k

k

whereT= 1s and vk(x, y, t) is the swimmer’s k surface velocity due to undulation. By describing η as the ratio of
Wuseful toWtotal, the current optimization problem is regarded as amulti-objective optimization problemwith
f (z) being a ‘weighted product’ scalarized utility function [55]. Recall thatN= 2 in the current setup for the
phalanx school, andN= 1 for the solitary swimmer.UnderN= 1, equation (9) reduces to a traditional
definition of a single swimmer propulsive efficiency found in [17, 34, 56, 57].

A total of four optimization cases are considered to represent three phalanx schools and a solitary swimmer.
The phalanx school cases only differ in respect to the separation distance SD, which is varied between 1L, 2L and
3L, respectively. The optimization cases are solvedwith a surrogate based optimization (SBO) algorithm that has
been shown to bewell suited for constrained engineering problems [34, 54]. 30 data points are chosen to
construct the initial surrogate for all cases using the LatinHypercube Samplingmethod [58]. Additionally, the
maximum iteration count kmax, and the tolerance termination criterion for the optimization procedureùopt [34]
are set to 1000 and 1× 10−3, respectively.
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3. Results

3.1.Optimization results
Table 1 presents the optimization results for all the cases, which include the number of evaluations, tolerance at
termination, optimal parameters, and efficiency. It can be appreciated that all cases terminatedwithin the
tolerance, with total evaluation counts that are significantly below themaximum iteration count kmax. The
number of evaluations ranged from34 to 51 evaluations, with the first 30 coming from the initial sampling
scheme and 4–21 optimization iterations. Thefirst three parameters related tomidline deformations, namely
{c0, c1, c2}, are found to be closely similar to that of the optimum solitary swimmer. In otherwords, all threefish
pair cases report similar optimumkinematics to that of a solitary swimmer (figure 2). These kinematics showno
noticeable headmotion, alongwith growing body undulations to reach a tail amplitude of roughly 0.1L. The
0.1L is themaximumallowable tail amplitude according to the present constraints (equation (8)). Similarly, the
optimumundulation frequency remains close to the upper bound of 3 Hz for the three schools. These results are
in agreementwith the postulated high-efficiency adaptations deduced frombiological data [17, 59]. The
optimumphase lag parameter,f, is shown to be close toπ, which represents an anti-phase lag between
swimmers in an infinite array of a phalanx fish school, consistent with the previous literature [6, 7]. The vorticity

Figure 2. Swimmermidline deformation across one period for four optimumpropulsivemodes: (a) solitary; (b) SD= 1L; (c) SD= 2L;
and (d) SD= 3L. Deformations of themidline in time are encoded every 1/10th of the period in the different shades of blue from
lightest (t = 0) to darkest (t = 1/3).

Table 1.Optimization results.

Case Evaluations Optimal parameter set Efficiency Tolerance

SD= 1L 51 {0.0001L, 0.2096L,− 0.1107L, 3, 1.037π} 21.49% 4.8 × 10−4

SD= 2L 42 {0.0L, 0.2105L,− 0.1107L, 3, 0.9995π} 22.05% 9.9 × 10−4

SD= 3L 39 {−0.0001L, 0.2104L,− 0.1108L, 2.9998, 0.9613π} 21.83% 2.4 × 10−4

solitary 34 {0.0L, 0.2105L,− 0.1107L, 3} 21.73% 4.0 × 10−4
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field created by the solitary and SD= 1L optimum swimmingmodes is shown after 1T and 2T infigure 3. The
wakes behind optimum swimmers are quite similar to the reverse vonKarman street typically associatedwith
high propulsive swimming efficiency in realfish [60], with no significant interactions noted between thewakes
of swimmers in the phalanx school at this separation.

To assess the sensitivity of the optimization results to a number of simulated swimmers in a periodic
domain, we perform another optimization study for a phalanx school with 3 simulated swimmers at SD= 2L. In
this case, the design vector, { }f f= ¢c c c fz , , , , ,0 1 2 , is 6th dimensional and accounts for the phase lag of the
third swimmer, f¢ (bothf and f¢ are taken as the phase difference in relation to thefirst, or the leftmost,
swimmer). Results of the 3-swimmer optimization case, shown in table 2, do not significantly deviate from its
2-swimmer counterpart, suggesting that the current optimization results are insensitive to the number of
simulated swimmers. In the rest of the paper, we present results from the baseline case that contains 2 swimmers
in the domain.

The reported optimumefficiency is slightly different for eachfish school, where the highest reported
efficiency, h =* 22.05%L2 , is found at a separation distance of 2L. The dense school (SD= 1L) and the sparse
school (SD= 3L) report lower optimumefficiencies of h =* 21.49%L1 and h =* 21.83%L3 , respectively. In

contrast to a solitary swimmer, we observe that phalanx fish schools with SD= 2L ( »
h h

h

-* *

*
1.5%L s

s

2 ) and

SD= 3L ( »
h h

h

-* *

*
0.5%L s

s

3 ) are slightlymore efficient, while the SD= 1L school ( » -
h h

h

-* *

*
1.1%L s

s

1 ) is slightly less

efficient.While the observed increase in efficiency of themost optimal phalanx school is slight (1.5%), the
schooling efficiency depends on a range of factors, which include the Reynolds number [60], the swimmer’s
shape [27], and the undulation frequency [14, 61]. Another important consideration is the definition of
efficiency itself, which varies among the studies. In this work, we consider the propulsive efficiency, which is the
product of the net force and the forward velocity divided by the input power (equation (9)), relevant for the
characterization of acceleration due to propulsion [17]. Nevertheless, whenwe compare the estimated increase
in the current studywith some other efficiencymetrics in the literature, we see that the current observed increase
in efficiency does not significantly deviate frompreviously reported values. For example, [9] use a ‘Cost of

Figure 3.Vorticity (color bar shown in solitary: 1T subfigure) in thewake of the swimmers for the optimummode in solitary
swimming (top row) and the SD = 1L phalanx school (bottom row) after 1T (left) and 2T (right), respectively (T = 1s).

Table 2.Optimization results for phalanx schools at SD = 2L using 2 and 3 simulated swimmers.

Number of swimmers Evaluations Optimal parameter set Efficiency Tolerance

2 42 {0.0L, 0.2105L,− 0.1107L, 3, 0.9995π} 22.05% 9.9 × 10−4

3 74 {0.0062L, 0.1882L,− 0.0945L, 3, 1.0583π, 0} 22.06% 3.8 × 10−4
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Transport’ (CoT) as ameasure of propulsive efficiency during steady swimming and report a 2% improvement
in theCoTof a phalanx school when compared to solitary swimming. The authors of [1], using amodified
version of the Froude efficiency, report an approximately 3% increase of efficiency in steady phalanx schools
when compared to solitary swimming.

3-D stemplots of optimization cases are shown infigure 4. 3-D space is used to represent each data point
according to its respective parameter value and is colored by its respective propulsive efficiency value.
Consequently,multiple stemplots are presented for each case to account for all four and five dimensions for
solitary and school swimming, respectively.

For the phalanx school cases, data points with the highest efficiencies are locatedwithin the same region of
the 3-D space in each stemplot. This optimal efficiency region is characterized by a small headmotion (c0≈ 0), a
high frequency ( f≈ 3Hz) and a phase lag,f= π, commonly referred to as anti-phase swimming. In other
words, efficient swimming patterns in all three phalanx schools rarely deviated from the configuration suggested
by their respective optimummode.

We define themaximumattainable swimming speed at the end of the considered period 2 T as
( )= =U U t T2max . Additionally, we define the time-averaged array-averaged streamwise force F̄x acting on

the swimmer:

¯ ( ) ( )ò= á ñF
t

F t d t
1

10x

t

x
0 0

0

with t0= 2 T. Table 3 presents hydrodynamic quantities such asWuseful,Wtotal, F̄x ,Umax, and the Reynolds
number at themaximum speed Remax , defined as:

( )
n

=Re
U L

11max
max

where ν= 1× 10−6 (m2/s) is the kinematic viscosity of water.

4.Discussion

4.1. Effects of body kinematics on the propulsive efficiency of a solitary swimmer
The optimumundulation of a solitary thunniform swimmer, shown infigure 2, differs slightly from the reported
midline kinematics for non-accelerated solitary thunniform swimmers [62, 63].While in both cases there is no
significant headmotion, the case presented here shows growing body and tail undulations, while thunniform
swimmers in steadymotionmaintain a relatively straight body and only use their tail for propulsion [63, 64]. The
differences are attributed to the effect of acceleration. Indeed,most previous studies [62–66] focus on steady
thunniform swimming, with unsteady swimming trends gaining traction only recently. For example, one
previous study investigated the acceleration of a solitary thunniform swimmer from rest [20]. Investigation of
the pressure forces around a solitary accelerating robotic tuna suggests that the posteriormain body generates a
significant portion of forward thrust as adjacentfluid is pushed backwards. Thismechanism is similar to drag-
based propulsionmechanisms found in anguilliform swimming and in low-Reynolds number swimming
[67, 68], and hence the study suggests that thunniform swimmersmay adopt an anguilliform-likemotion as they
accelerate from rest, as beingmore efficient in low speeds. Indeed, current optimization results are in linewith
this trend, with the optimal point falling in an optimum region in the c0− c1− c2 space which is characterized by
large posterior body and tail undulations (see figure 2). A stronger head yawwas also attributed to acceleration in
the studies of anguilliform and carangiform species [17–19]. However, in the studies of accelerating tuna fish,
while the increased head amplitudewas also observed, it did not appear to generate thrust [20]. It is possible that
a stronger headmotion during acceleration is not directly driven by efficiency, but by other physiological
considerations (for example, itmight be easier to produce a high tail amplitudewhile alsomoving a head due to
muscular constraints), a point that needs to be investigated in the future.

4.2. Effects of body kinematics on the propulsive efficiency of phalanx schools
Tounderstand the similarity in the optimumbody kinematics between all three phalanx schools and the solitary
swimmer, themain energy savingmechanisms in phalanxfish schools are discussed, namely: channeling and
pulsating jet effects.When swimmers in a phalanx school are within close laterally proximity to one another, an
area of augmented flowdevelops between them. This augmented flow arises as a result of each swimmer
generating a velocity field in its swimming direction due to the no-slip condition. Since the augmented velocity
field impartsmomentum in the swimming direction, swimmers need less thrust force to reach a specific
swimming speed [53]. This is typically referred to as the channeling effect [69] and can be observed infish
schools which range fromphalanx [8] to rectangular [53] and diamond [38] schools.When swimmers in a
phalanx school swimwith an anti-phasemotion, counter rotating vortices are shed by the two neighbors in each
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Figure 4. 3-D stemplots of the four dimensions for a solitary swimmer (first row) andfive dimensions for phalanx schools with
SD = 1L (second row), SD = 2L (third row) and SD = 3L (fourth row).

Table 3.Hydrodynamic quantities of optimum swimmers.

Case Wuseful (mJ) Wtotal (mJ) F̄x (N) Umax(m/s) Remax

SD= 1L 184.11 856.67 0.28139 0.65205 1.96 × 105

SD= 2L 183.69 833.97 0.28108 0.65127 1.95 × 105

SD= 3L 181.78 832.64 0.27961 0.64779 1.94 × 105

solitary 181.19 833.68 0.27916 0.64899 1.95 × 105
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half period. These counter rotating vortices combine to formdipoles, producing a pulsating jet behind the
swimmers [5].While in phase swimmers can similarly benefit from the pulsating jet affect, anti-phase swimmers
produce higher thrust by creating amore compact jet [5]. Therefore, it can be observed that swimmingwith a
higher undulation frequencywill enhance both energy savingmechanisms, since higher undulation frequency
will result in fasterflow around each swimmer [20] as well as a higher intensity pulsating jet in their wake.
Similarly, high body and tail amplitudes result in fasterflow and larger vortices, inducing faster propulsion [34].
It is then of no surprise that the optimalmidline kinematics in an accelerating phalanx school exhibit similar
behaviour to that of a solitary swimmer, achieving amaximized tail displacement as well as an undulation
frequency.

4.3. Effects of separation distance on the propulsive efficiency of phalanx schools
Figure 5 shows plots of the optimal propulsive efficiency of eachfish school optimization case as a function of the
separation distancewithin a school (Subplot 5(a)). Additionally, the two quantities related to the useful and total
work, namelyWuseful andWtotal, are included to investigate what is driving the changes in efficiency across
different separation distances. As previously noted, the optimal efficiency of a phalanx school in the current
study peaks at a separation distance of 2Lwith a value of 22.05%,which amounts to a 1.5% increase over the
solitary swimmer optimum. This increase is largely driven by a higher useful work quantity

»-
1.4%

W W

W
L s

s

useful2 useful

useful
. The relative change in total work is »-

0.03%
W W

W
L s

s

total2 total

total
, which is an order of

magnitude lower than the relative change inWuseful. Since the optimummode uses an anti-phase gait, the
increasedWuseful could likely be attributed to the presence of a pulsating jet behind the swimmers. The presence
of a pulsating jet behind the swimmers would increase their time-averaged streamwise force, F̄x (as seen in
table 3), and consequently contribute tomorework in the swimming direction orWuseful. Indeed,Wuseful is
shown to increase with a decreasing separation distance across the three schools which all employ the same
midline and phase kinematics, and is above solitary for all cases. This trend suggests that the increase inWuseful is
directly related to thrust enhancingmechanisms, such as the pulsating jet and channeling effects, in the phalanx
school.

While the school with a SD= 1L results in the highestWuseful, its propulsive efficiency is the lowest, even
when compared to a solitary swimmer. This happens becauseWtotal similarly increases to reach the highest value
between all phalanx schools and the solitary swimmer. Since the direction of swimming and the separation
distance isfixedwithin each school (in a sense that the swimmers are not free to drift apart under the influence of
fluid forces), swimmers in a school would have to exert additional effort, if needed, tomaintain the samefixed
distance during swimming.While thismay not present a challenge atmore sparse schools, such as SD= 2L and
SD= 3L, this can result in an increasedWtotal in dense schools (SD� 1L). Indeed, the challenge of dense phalanx
schools has been investigated in previous studies. For example, Hemerijk et al observed a deteriorated steady
group swimming efficiency, when compared to solitary swimming, for simulatedmullets in phalanx schools
with SD< 1L [1]. The authors comment: ‘This is probably due to an increased resistance (on average per fish) of
the phalanx to oncoming flowdue to close proximity of lateral neighbours’. Gazolla et al [6] performed
simulations, using a vortex particlemethod, ofmultiple phalanx schools consisting of pairs of 2-D self-propelled
anguilliform swimmers. In these simulations, where swimmers were free tomove in both streamwise and lateral
directions and only their undulationwas fixed, the pairs in a phalanx school diverged after 8 periods. In a bigger
phalanx school (consisting of 5members), the swimmers diverged at an earlier time of 6 periods [6]. Both these
studies suggest that swimming in an infinite phalanx school requires active adjustment and added effort to
maintain afixed separation distance, or at the least cohesion, within a school. Inviscidmodels of rigidwings in

Figure 5.Optimumefficiency,Wuseful andWtotal as a function of separation distancewithin an infinite phalanx school.
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steadyflow similarly suggest that while densely packed phalanx schools (SD= 0.66L) show an 5% increase in the
swimming speed over a solitary swimmer (similar qualitative trends can be observed forUmax in table 3), the
associated cost of transport increases by 4% [10]. Highly compact schools (SD< 1L) could not be simulated here
due to computational constraints of the body-fittedCFDmethodology. Nonetheless, they represent an
important and potentially beneficial case forfish schooling, and theywill be included into optimization studies
in our futurework.

Finally, themost sparse school (SD= 3L) displayed similar propulsive trends to the solitary swimmer, where
the η,Wuseful andWtotal quantities remained relatively unchanged. This is unsurprising, since all the
hydrodynamic quantities are expected to approach the solitary swimmer limit with increasing separation
distancewithin a school [10]. The presented optimization cases at different separation distances suggest the
presence of three schooling regimes of accelerating phalanx thunniform swimmers:

(i) SD� 1L: higher thrust, higher Wuseful but higher Wtotal in a phalanx school can be achieved compared to
solitary swimming. Consequently, propulsive efficiency could suffer in a dense school.

(ii)SD≈ 2L: improved thrust, improvedWuseful and relatively constantWtotal compared to solitary swimming.
Highest gains in efficiency, when compared to a solitary swimmer, as the school benefits from energy saving
mechanismswithout providing additional work tomaintain its position.

(iii)
SD� 3L: relatively constant thrust,Wuseful,Wtotal and η as compared to solitary swimming as the school begins
to approach the solitary swimmer limit.

4.4. Effects of phase synchronization on the propulsive efficiency of a phalanx school
To isolate the effects of phase synchronization, we compare the optimal point, in each case, to two other points
where all other kinematics {c0, c1, c2, f} arefixed to optimumvalues and the phase is changed to 0 and 0.5π,
respectively, as shown infigure 6 (note that the phase angles larger thanπwould result in repeated efficiency
points due to symmetry). Between all three schools, anti-phasemotion (f= f*≈ π) consistently shows the best
swimming efficiency, with the in-phasemotion (f= 0) being second best and thef= 0.5π being theworst. This
is in linewith previous studies which investigated phase synchronization behaviour in steady swimming of self-
propelled foils. For example, Raspa, Godoy-Diana andThiria [4] showed that in-phasemotion (resulting in
asymmetric flow) leads to higher transverse velocity fluctuations, when compared to amotionwhich results in
symmetric flow (arising from anti-phase swimming). As a result, for a givenmomentum input, the anti-phase
motion generatedmore thrust. A similar studywithflexible foils showed that while in-phasemotion did benefit
swimmers from the pulsating jet effect, it resulted in awakewhere the average propulsive jet wasmore laterally
spread, when compared to thewake of an anti-phasemotion, and thus did not contribute efficiently to
propulsion [5]. This effect was also observed for pairs of realfish in steady swimming [7]where therewas a slight
preference for anti-phasemotion over in-phase. Additionally, a preference of anti-phase and in-phasemotion
over an intermediate phase lag (such asf= 0.5π) has been previously shown in steady swimming simulations of
tetrafish [9].

In the SD= 2L and SD= 3L schools, themost efficient phase lag does not necessarily result in highWuseful,
indeed it is the lowest forf= f*, when compared to otherf values. Instead, themost efficient phase lag reduces
theWtotal for the school. This is in agreement with the results ofDewey et al [13]whoobserved that for hydrofoils
oscillating side by side, an increased efficiency could be attained either by an increase in thrust (as in in-phase
oscillations), or by reduction in a total power input (as in anti-phase oscillations). Accordingly, a phase lag of

Figure 6.Optimumefficiency,Wuseful andWtotal as a function of phase lag and separation distancewithin an infinite phalanx school.
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f= 0.5π results in the highestWtotal for all the cases, perhaps due to a complete lack of synchronization and thus
evenmore chaoticflow conditions detrimental for stability. Alternatively, themost efficient phase in the
SD= 1L school results in the highestWuseful while keeping relatively lowWtotal. This is likely due to phase
synchronization effects playing a larger role in dense schools, when compared to sparse schools, and can be
further explored in a future study.

Finally, we observe that the relative ranking of efficiency based on separation distance within a school does
not change regardless of phase lag, with themost preferable distance remaining SD= 2L. Furthermore, it can be
seen that higher efficiency gains can be attained by varying the separation distance rather than the phase angle in
the school. This suggests that the separation distancewithin a phalanx school plays a larger role in the schooling
efficiency than phase synchronization, for the parameters explored in this study.

4.5. Analysis of swimming stability using differences in the net streamwise and lateral forces
The swimming stability of phalanx swimmers is analyzed by calculating the differences in the net streamwise and
lateral forces between swimmers in each phalanx school, a similar process to [9].We define the difference in the
time-averaged net streamwise force, ̄DF , as

¯ ( ) ( ) ( )  òD = -F
t

F t F t d t
1

, 12
t

0 0
1 2

0

where F1(t)∥ and F2(t)∥ are the propulsive (streamwise) forces on the left and right swimmers, defined as

∮( ) ( ) · ( ) s= - G
G

F t dn i , 13k k k
k

where i is the unit vector in the streamwise direction, and k= 1,2 correspond to the left and right swimmers,
respectively. Similarly, we define the difference in the time-averaged net lateral force, ¯DF̂ , as

¯ ( ) ( ) ( )òD = -^ ^ ^F
t

F t F t d t
1

, 14
t

0 0
1 2

0

where F1(t)⊥ and F2(t)⊥ are the lateral forces on the left and right swimmers, given as

∮( ) ( ) · ( )s= - G^
G

F t dn j , 15k k k
k

and j being the unit vector in the lateral direction. Table 4 includes ̄DF and ¯DF̂ for the optimumphalanx
swimmers denoted by the phase anglef* at SD= 1L, 2L, 3L, as well as the corresponding values for the same
kinematics but a phase lag off= 0 andf= 0.5π. Using thefirst rowof table 4 as an example: ¯ ∣D f*F is the net
streamwise force in the optimum school when SD= 1L, while ¯ ∣DF 0(N) is the net streamwise force for a SD= 1L
school employing the same optimumbody kinematics butwith no phase lag between swimmers.

We observe that the optimal school with the smallest separation distance (SD= 1L) experiences the largest
magnitude of the difference in the net streamwise force or ¯ ∣D f*F . This still remains to be the case when the phase
lag is not optimal, as observed through ¯ ∣DF 0 and ¯ ∣D pF 0.5 , suggesting that swimmers in a compact phalanx
school, such as the SD= 1L school, aremore likely to swimpast each other due to an imbalance in the net
streamwise force. Conversely, the optimal school at SD= 2Lhas a slightly lowermagnitude of ¯ ∣D f*F when
compared to both optimal SD= 1L and SD= 3L schools. In otherwords, themost efficient phalanx school, at
SD= 2L, is able tomaintain cohesion effectively, at least in the streamwise direction.

Nevertheless, larger differences in the lateral force of all optimal schools, as captured by ¯ ∣D f^ *F , suggest that
optimal phalanx swimmers would have to direct part of their swimming effort tomaintain cohesion in the
lateral direction. As onewould expect, themagnitude of ¯DF̂ is observed to decrease with the separation
distancewithin a phalanx school. For example, the largest observed ¯ ∣D f^ *F , at an optimum school with SD= 1L,
is almost 1.25 times larger than of the school with SD= 2L. The difference in ¯ ∣D f^ *F as a function of SD levels off
as the separation distance increases, with little change observed in ¯ ∣D f^ *F between SD= 2L and SD= 3L. It is
worthy to note that ¯DF̂ generally shows a strong dependence on the phase lag,f. The largest observed
magnitudes of ¯DF̂ typically occur during anti-phasemotion, with the lowest values occurring during in-phase
motion. As in-phasemotions also result in a low total work, this suggests an existence of a correlation between
stability and the total work.

Table 4.Net streamwise and lateral forces of optimumand sub-optimum swimmers.

Case ¯ ∣D f*F (N) ¯ ∣DF 0(N) ¯ ∣D pF 0.5 (N) ¯ ∣D f^ *F (N) ¯ ∣DF̂ 0(N) ¯ ∣D pF̂ 0.5 (N)

SD= 1L 0.0409 −5.78 × 10−4 −0.368 1.171 −0.005 0.861

SD= 2L 4.00 × 10−4 5.64 × 10−4 −0.115 0.951 0.002 0.699

SD= 3L −0.006 −7.944 × 10−5 −0.067 0.911 0.001 0.657
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To further verify this hypothesis, infigure 7we present the correlations between the force difference (in both
the streamwise and lateral directions) and the efficiency, useful work, and total work taken from the
optimization data of SD= 2L case. First, we see that the streamwise force difference is, indeed, significantly
lower than the lateral force difference. Additionally, the net streamwise force does not seem to correlate with
either of the considered parameters influencing swimming efficiency, although higher values of streamwise
instability typically occur for low-efficiency cases. Lateral force difference, on the other hand, correlates themost
significantly with the total work (correlation coefficientR= 0.70), as predicted. Correlationwith useful work is
lower, but not insignificant (R= 0.58).We see that high-thrust producing configurations (high useful work) do
typically result in higher lateral net forces (as occurs, for example, during anti-phase swimming as previously
discussed). This results in a net positive correlation between the lateral force difference and efficiency (albeit with
a relatively lowR= 0.50).We remark, however, that the configurationswith the highest lateral force differences
occur at low efficiencies, the same trendwas observed for the streamwise forces.

A strong correlation between stability and total work suggests a relation between stability and energy savings
infish schools, i.e. hydrodynamically stable positions also require a low energy input tomaintain. As a low
energy input does not necessarily translate into a high thrust and thus a high efficiency, this trend points to an
existence of a trade-off between efficient and stable formations of phalanx schools considering variables such as
kinematic gaits and phase synchronization.

5. Conclusions

This paper presents an optimization study of accelerating phalanx fish schools considering themidline
kinematics, frequency and phase synchronization as optimization parameters, while varying the separation
distancewithin the school to investigate the effect of a school density. A formal optimization procedure allows
for a consistent and efficient exploration of the parameter spacewith the guaranteed convergence to optimumat
a specified tolerance. To the authors’ knowledge, optimization studies of hydrodynamic interactions in
accelerating fish schools have not yet appeared in the literature. Themain conclusions of the study can be
summarized in the following: (1)Anoptimumkinematics in a school does not deviate significantly from the
optimumkinematics of a solitary swimmer; (2) In-phase and anti-phasemotions both showhigher efficiency
than the phase lag values in between, with the highest efficiency achieved by an anti-phasemotion; (3)A
separation distancewithin the school has a profound effect on efficiency: efficiency is decreased in dense schools
due to a higher total work required tomaintain cohesion, it peaks at an optimum separation distance of about
SD≈ 2L, and it gradually approaches the efficiency of a solitary swimmer at higher separations. An important
conclusion of the current study is that a separation distance has amore profound effect on efficiency than a phase

Figure 7.Correlation between stability, efficiency, useful work and total work using the data from SD = 2L case. Top row: net
streamwise forces, bottom row: net lateral forces. Correlation coefficientR is includedwithin each image.
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synchronization; in fact, higher efficiency gains can be attained by varying the separation distance rather than the
phase angle in the school; (4) Stability of schooling patterns correlates favorablywith the total energy input
(hydrodynamically stable positions require low energy input), but not necessarily with efficiency
(hydrodynamically stable positions are not necessarily themost efficient), which suggests an existence of trade-
off between stable and efficient formations. These insights can be useful for design and control of autonomous
bioinspired robotic swarms during acceleration andmaneuvers. The presented optimization framework, even
withfixed swimmers’ positions, partially takes into account the destabilizing effects caused by a difference
between the fluid forces acting on the swimmers by penalizing the total work and thus driving the unstable
modes away from the optimum solution.However, it does not consider the changes in the background flow that
could be incurredwere the swimmers allowed to decelerate, accelerate, or diverge from each other. Futurework
will explore the effects of fully-decoupledmotilefish schools on optimumefficiency, and the influence of three-
dimensional effects.

We remark that the conclusions of any optimization study are highly sensitive to a definition of the objective
function. For example, if onewere to choose tomaximize the efficiencywhileminimizing the total work, instead
ofmaximizing the useful workwhileminimizing the total work, as considered in the current study, the results
could be different. Additionally, the current work does not consider ametabolic energy input offish required to
sustain a given kinematic gait [70–72], whichwould require coupling of neuromechanical andfluid-structure
interactionmodels offish, and could be explored in future studies.
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