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ABSTRACT
In this paper, we investigate unsteady behavior of flexible

vessels carrying a blood flow. Membrane model with constant
tension for the vessel walls and incompressible newtonian fluid
approximation for blood is adopted. Developed computational
model is applied to simulate the coupled fluid-wall behavior in
2D collapsible channels and 3D collapsible tubes.

INTRODUCTION
Vessels carrying blood flow in a human body are known to

be flexible tissues. Interaction of the internal blood flow with the
vessel wall compliance, in addition to significant alteration of the
fluid mechanical properties (such as shear and normal stresses)
with respect to rigid wall cases, can also result in a variety of
interesting mechanical phenomena, such as flow limitation, self-
exciting oscillations (flutter), or tube collapse. These phenom-
ena are especially pronounced at higher Reynolds number and
thus are relevant to the medical condition of stenosis caused by
atherosclerosis, which results in higher local flow rates and el-
evated risk of collapse manifestation. In the current paper, we
investigate the flutter and collapse phenomena in application to
2D collapsible channels and 3D collapsible tubes. We model
the elastic vessel wall as a biological membrane with the con-
stant tension and no bending stiffness, supported by a common
assumption of negligible bending stiffness in biological materi-
als [1, 2]. We stress, however, that the tube law and the flow
limitation regime depend strongly on the elasticity model. Thus,
bending rigidity would act to reduce the wall collapse [3] and
postpone the onset of divergence and flutter.
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NUMERICAL METHOD
Numerical method consists of an Arbitrary Lagrangian-

Eulerian (ALE) formulation of incompressible Navier-Stokes
equations coupled to a simple constant-tension geometrically
nonlinear elastic wall model by the kinematic and traction
boundary conditions:

u = w, (1)
σn− pe = −T γ, (2)

where u is the fluid velocity, w is the wall velocity, σn is the
normal fluid stress acting on the membrane, pe is the external
pressure, T is the longitudinal tension and γ is the nonlinear wall
curvature (mean curvature in a 3D case). The coupled unsteady
fluid-structure problem is solved numerically with the spectral
element method [4], which is analogous to the finite element
method, but it retains a specified number of collocation Gauss-
Lobatto points within each element, thus giving it spectral con-
vergence properties.

COLLAPSIBLE CHANNELS
For validation of the developed computational method, we

first simulate the steady and unsteady results of Luo&Pedley [5,
6] for the flow in a 2D collapsible channel. We find excellent
agreement with Luo&Pedley in calculated steady wall shapes
and pressure profiles for several cases. For every Reynolds num-
ber, if tension is reduced below some critical value Tu, the steady
solution becomes unstable, and self-exciting oscillations occur.
Dependence of the critical tension Tu on Reynolds number is
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FIGURE 1. DEPENDENCE OF THE CRITICAL TENSION Tu ON
REYNOLDS NUMBER.

given in Fig. 1 for L/D = 5, Ld/D = 30 and pe− pout = 1.75Pa
(L is the length of the elastic segment, Ld is the length of the
downstream rigid segment). It is believed that the onset of self-
exciting oscillations is related to the flow limitation and the sub-
sequent regime of negative dependence of the flow rate Q on the
pressure drop pin− pout , which makes a system statically unsta-
ble [7]. If the tension is reduced even further, below the second
critical tension Tc, complete wall collapse takes place and numer-
ical solution breaks down. This occurs because the tube law de-
scribing the elastic response of the wall as an area change versus
the applied pressure difference ∆p = pe− p allows for a complete
collapse to a zero area in a constant-tension model under a criti-
cal value ∆p/Tc = 2/((L/2)2 +1) (which can be easily deduced
from the traction condition (2) in the absence of flow). With the
bending rigidity included, the critical value of ∆p/Tc increases
significantly, and the complete wall collapse would occur under
much higher pressure difference or much lower tension.

COLLAPSIBLE TUBES
If the same constant-tension model is applied in 3D case, one

can see that axisymmetric steady solutions for a wall shape in the
absence of flow, giving the tube law, do not exist for the elastic
segments of length L > 1.32. Indeed, say, for a zero transmural
pressure ∆p = 0, the corresponding axisymmetric solution would
involve minimal surface r = c cosh(x/c), with no real value for
a constant c for L > 1.32. As a consequence, static divergence
resulting in a complete collapse of axisymmetric flow solution is
observed for any values of tension and any positive pressure dif-

ference ∆p = pe− p for elastic membranes longer than L = 1.32.
It was confirmed that shorter membranes do possess steady ax-
isymmetric solutions. Self-exciting oscillations have not been
observed in the axisymmetric cases for neither short nor long
membranes. We therefore conclude that, in accordance with the
recent findings of Heil&Boyle [8], self-exciting oscillations in
tubes can only arise from non-axisymmetricaly buckled initial
configurations. Whether such oscillations can be observed with
a simple constant-tension membrane model is currently under in-
vestigation.
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