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A hybrid multicode computational method is developed that allows combining compressible and low Mach

number codes into a single computational solver. The proposed methodology can be used for integrated simulations

ofmulticomponent engineering problems. Theunsteady couplingbetween the two codes is performedvia exchanging

time-dependent state information through the interfaces using overlapping meshes. The proposed coupling

procedure is validated on laminar steady and unsteady test problems. Both constant-density and variable-density

regimes of the lowMach number code are investigated. Results of the test cases performed in frameworks of one-way

coupling and two-way coupling are documented. Several methods of implementation of interface conditions for the

compressible code are compared by looking at the levels of dilatation, as well as numerical errors. The injection

method (when all the variables are simply transformed from one code to another through an interpolation

procedure) is chosen for its superior stability, accuracy, and simplicity of implementation. Numerical results for the

coupled calculations obtainedwith the injectionmethod show good agreement with both standalone calculations and

analytical solutions.

Nomenclature

A = area of the computational domain
c = speed of sound
cp = specific heat at constant pressure
cv = specific heat at constant volume
k = thermal diffusivity
L = length, error norm
M = Mach number
n = unit normal vector
Pr = Prandtl number
p = pressure
Q = heat conduction and heat release rate
Re = Reynolds number
r = distance from the center of the disturbance
Sij = strain rate tensor
T = temperature
t = time
u = velocity vector
�u; v; w� = velocity components in a Cartesian coordinate

system
�ux; ur; u�� = velocity components in a cylindrical coordinate

system
�u1; u2; u3� = velocity components in a rotated Cartesian

coordinate system
V = volume of the computational domain
x = coordinate vector
�x; r; �� = cylindrical coordinate system
�x; y; z� = Cartesian coordinate system
�x1; x2; x3� = rotated Cartesian coordinate system
� = angle between the computational domains of the

two codes
�t = time-step size
�x = grid size

� = ratio of specific heats
� = boundary-layer thickness
�2, �3 = residual terms in low Mach number

expansions
� = dynamic viscosity
� = kinematic viscosity
� = density

Subscripts

d = disturbance
i, j, k = indexes of the coordinates
n = direction normal to the boundary
r = reference
w = wall
1 = freestream

Superscripts

c = compressible
lm = low Mach number
(0), (1), (2) = order with Mach number
� = dimensional
0 = fluctuation

I. Introduction

W ITH the advance in performance and capabilities of modern
computers, the drive toward large-scale integrated

simulations of complex flow systems is growing. Examples of such
integrated simulations include prediction of an aerothermal flow
through an entire gas turbine engine [1,2], computations of helicopter
blade-wake/blade-vortex interactions [3,4], simulation of film
cooling of the turbine blades [5], etc. The different flow physics in
each individual component of these systems (compressor and turbine
versus combustor in the jet engine, near-blade region versus wake
region in the helicopter simulations, and plenum and film holes
versus blade exterior in the cooling systems) calls for the coupling of
different solvers, such as compressible and lowMach number codes,
large eddy simulation with Reynolds-averaged Navier–Stokes
methods, unsteady Reynolds-averaged Navier–Stokes with Rey-
nolds-averaged Navier–Stokes methods, etc. This area of multicode
multiphysics coupling is emerging and has not yet received much
attention in the literature. With the hybrid multicode approach, each
part of the simulated phenomena, usually corresponding to a separate

Received 20 June 2007; revision received 18 March 2008; accepted for
publication 2 April 2008. Copyright © 2008 by the authors. Published by the
American Institute of Aeronautics and Astronautics, Inc., with permission.
Copies of this paper may be made for personal or internal use, on condition
that the copier pay the $10.00 per-copy fee to theCopyright Clearance Center,
Inc., 222RosewoodDrive,Danvers,MA01923; include the code 0001-1452/
08 $10.00 in correspondence with the CCC.

∗Ph.D. Student, Department of Aeronautics and Astronautics; currently
Postdoctoral Research Fellow, Université Pierre etMarie Curie, Paris 6, Paris
75005, France. Member AIAA.

†Professor, Department of Aeronautics and Astronautics. Member AIAA.

AIAA JOURNAL
Vol. 46, No. 8, August 2008

1990

http://dx.doi.org/10.2514/1.32884


geometrical unit, is treated with its own numerical code that is best
suited for describing its physics. Different numerical codes are
combined by an unsteady coupling procedure, allowing for an
exchange of time-dependent state information through the interfaces.

Geometrical complexity of many industrial applications tackled
by computational fluid dynamics codes promoted a development of a
multidomain approach, or domain decomposition method, in the
1980s. Difficulty in creating a single computational grid with a high
resolution in all the critical places led to splitting a computational
domain into separate blocks and combining them through interface
conditions. There are two different approaches to the domain
decomposition method. In the first approach, the overlapping or
overset grids are used and some interpolation scheme is implemented
to transform the interface values from one grid to another [6–8].
Another approach uses nonoverlapping computational grids, where
the location of grid points is exactly matched at the interfaces [9–11].
It is argued by the advocates of the matching grids that in this case,
special difference schemes satisfying summation by parts property
can be used, resulting in a cancellation of errors at the interfaces and
assuring the strict stability of the method [9,10]. However, in
complex geometries, it is not always possible to ensure a perfect
matching of the component grids, and use of overlapping meshes is
often inevitable.

However, the difference between the domain decomposition
method and the current multicode approach is that the set of
equations solved in each subdomain in the former method is exactly
the same. Berger [6,7], Chesshire and Henshaw [8], and Carpenter
et al. [9] looked at hyperbolic partial differential equations; Pfeiffer
et al. [12] and Chang and Chien [13] studied elliptic problems. The
domain decomposition method has been applied to the computation
of compressible flows by Kopriva [14], Hesthaven [15], and
Nördstrom andCarpenter [16]. Incompressible flowswere treated by
Manna et al. [11] and Strikwerda and Scarbnick [17]. In the present
methodology, a set of partial differential equations is different in
different subdomains: namely, compressible versus low Mach
number equations. Mathematical grounds developed for the
coupling between numerical solutions of identical equation sets are
not easily extendable to the situation with different equation sets
[18]. The situation is complicated by the fact that a different number
of equations in each system results in a different rank of the discrete
operators for each equation set.

Although a theoretical background for coupling between
compressible and low Mach number codes is yet to be available,
the present paper proposes a computational methodology for such a
coupling and documents numerical experiments performed with this
method on a wide range of steady and unsteady laminar problems.
Both constant- and variable-density regimes of the lowMachnumber
code are investigated. In Sec. II, the numerics of individual codes to
be coupled is briefly outlined. Coupling procedure and details of the
interface condition formulation are described in Sec. III. Validation
of the coupling procedure starts with the test cases performed in a
one-way coupling framework, followed by the two-way coupling
tests in Sec. IV. Conclusions are stated in Sec. V. The proposed
procedure has been further applied to large eddy simulations of film-
cooling flow for a realistic film-cooling configuration, which is
documented in [5].

II. Description of Individual Codes

A. Compressible Code

The compressible code used in the present multicode solver was
developed by Xiong [19]. Compressible Navier–Stokes equations
written in primitive variables are solved numerically:

�;t � ��ui�;i � 0 (1)

�ui;t � �ujui;j ��p;i � 1=Re��2�Sij�;j � �2=3�uj;j�;i� (2)

�T;t � �ujT;j � �� � 1��Tuj;j � �=�PrRe��kT;i�;i
� ��� � 1�M2=Re�2�SijSij � 2=3�SiiSjj� (3)

p� �T=��M2� (4)

The preceding equations are nondimensionalized with the
relations

�� ��=��r ; ui � u�i =u�r ; T � T�=T�r
p� p�=���r u�2r �; �� ��=��r ; k� k�=k�r

xi � x�i =L�r ; t� t�u�r =L�r

(5)

where superscript � refers to the dimensional quantities, and
subscript r denotes the reference variables. Variables without an �
represent nondimensional variables throughout this paper. Non-
dimensional parameters are introduced as follows:
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The spatial discretization of Eqs. (1–4) is achieved by mapping the
body-fitted mesh coordinates from physical space to the uniform
computational space. A fourth-order-accurate central-difference
scheme is used for first and second derivatives in the computational
space. A fully implicit, approximately factorized, second-order-
accurate time-marching scheme is used to advance the governing
equations (1–4) in time. A linearized dual-time-stepping subiteration
scheme is employed to accelerate the convergence of subiterations.
With a fourth-order discretization scheme and implicit treatment,
block pentadiagonal matrix arise with additional blocks at the
boundary nodes to account for the high-order boundary treatment.
The resulting coefficient matrix can be inverted efficiently using the
direct Gaussian elimination method. Further details of the numerical
implementation of the compressible code can be found in [19].

B. Low Mach Number Code

The low Mach number code used in the multicode solver was
written by Pierce [20]. The set of equations solved numerically is the
low Mach number approximation [21] of the compressible Navier–
Stokes equations written in conservative form:

�;t � ��ui�;i � 0 (7)

��ui�;t � ��ujui�;j ��p�2�;i � 1=Re��2�Sij�;j � �2=3�uj;j�;i� (8)

��T�;t � ��ujT�;j � 1=�PrRe��kT;i�;i (9)

p�0� � �T (10)

To obtain low Mach number approximation, all nondimensional
flow variables in the Navier–Stokes equations were expanded in the
power series of Mach number M, and the coefficients of the
monomials Ml; l� 0; 1; 2; ::: were set to zero. Equations
corresponding to the zeroth-order approximation l� 0 are
Eqs. (7–10), or low Mach number equations. For all the variables
except for the pressure, only zeroth-order terms enter the low Mach
number equations (7–10). For those variables, the superscript
denoting the order of the variable is dropped for brevity (variables
without a superscript are zeroth order by default). In the derivation of
Eqs. (7–10), additional assumptions were made that the total heat
conduction and heat release rateZ

V

Q�0� dV
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as well as the total volume flowZ
@V

u�0� 	 n dA

are zero in the computational domainZ
V

Q�0� dV � 0

Z
@V

u�0� 	 n dA� 0 (11)

Conditions (11) lead to the nullification of a time derivative of a
zeroth-order pressure,

dp�0�

dt
� 0 (12)

otherwise present in the low Mach number equations [22].
Nondimensionalization of Eqs. (7–10) is performed using the

same relations (5) as in the compressible formulation, except for the
nondimensionalization of pressure. Indeed, if pressure is normalized
with ��r u

�2
r , as in relations (5), the nondimensional pressure

determined by the equation of state becomes infinite if the Mach
number is zero [see Eq. (4)]. To remove the singularity in the
nondimensional pressure in the zero Mach number limit, different
normalization for pressure is employed:

p� p�=p�r (13)

wherep�r is a reference pressure. Freestream conditions are chosen to
provide the reference values in relations (5) and (13).

For numerical discretization of Eqs. (7–10), velocity components
are staggered with respect to the density and other scalars in both
space and time. A second-order central-difference scheme is used for
the integration of momentum equations, whereas the quadratic
upstream interpolation for convective kinematics (QUICK) scheme
is employed for scalar advection to avoid the formation of spatial
oscillations. A semi-implicit second-order scheme, similar to the
Crank–Nicolson or trapezoidal scheme, with Newton–Raphson
subiterations is used for time advancement. Advection and diffusion
terms in the radial and azimuthal directions and pressure in all
directions are treated implicitly, whereas all the other terms are
treated explicitly. To advance the momentum equations, the
fractional-step method is used. The Poisson equation for pressure is
solved with the multigrid method. In three-dimensional formulation,
Eqs. (7–10) are cast in cylindrical coordinates for simulating coaxial
combustors [20] and film-cooling supply holes [5]. For additional
details of the numerical method, the reader is referred to [20].

Both compressible and low Mach number codes are written in
large eddy simulation formulation with the dynamic Smagorinsky
eddy-viscosity model [23] used for treatment of subgrid-scale terms.

III. Coupling Procedure

Consider a situation in which a low Mach number code domain
and a compressible code domain overlap, as in Fig. 1. The lowMach
number code domain is located at the left and the compressible code

domain is located at the right in Fig. 1. The local coordinate systems
used in each code are also shown. The lowMach number code uses a
cylindrical coordinate system �x; r; ��, whereas the compressible
code uses the Cartesian coordinate system �x; y; z�. Assume that
boundary conditions at the boundaries of each computational domain
not contained within another code domain, shown as solid lines in
Fig. 1, are known. The coupling procedure therefore consists of
specifying boundary conditions in each code at the boundaries
contained within another code domain, shown as dashed lines in
Fig. 1, which will be referred to hereafter as interface boundaries, or
interfaces. To ensure that unsteady features of the simulated
phenomena are retained during coupling, exchange of state
information through the interfaces is performed at every time step.
This exchange takes place at the beginning of a time step, after which
each code performs inner iterations with the state information at the
interfaces used as boundary conditions. The numerical solution
inside the region of overlap encompassed by the interface boundaries
is obtained by both codes.

We now describe the interface conditions specified at the interface
boundaries in each code.Hereafter, the superscript c is used to denote
the variables in the compressible code and the superscript lm refers to
the variables in the lowMach number code. This particular choice of
the interface conditions is validated in Sec. IV, where comparison
with other methods is performed with application to test problems.

A. Interface Conditions for the Compressible Code

Variables obtained numerically in the compressible code are
f�; u; v; w; Tg. Specification of these five quantities
f�c; uc; vc; wc; Tcg is required at the grid nodes corresponding to
the interface boundaries of the compressible code. One can
interpolate the low Mach number code solution to the grid nodes of
the interface boundary to obtain the values f�lm; ulm; vlm; wlm; Tlmg
at these nodes. The question is how to reconstruct the compressible
values from the lowMach number values. Although several methods
of reconstructionwere considered and tested, as described in Sec. IV,
the one that shows the best performance in terms of accuracy and
stability is also the simplest. It consists of transforming all five
variables from the lowMach number code to the compressible code,
which is referred to as injection in the present paper:

uc � ulm; vc � vlm; wc �wlm

�c � �lm; Tc � Tlm (14)

Note that the injection method is overposed if used as a boundary
condition for the compressible code in a subsonic case. It is, however,
physically justified when used as an interface condition, because the
interface is an interior region of the fully coupled solution and the full
transfer of variables from one computational block to another is
possible.

B. Interface Conditions for the Low Mach Number Code

1. Velocity and Temperature

In the lowMach number code, interface conditions are required at
the interface boundaries for the three components of velocity
�ux; ur; u��, temperature T, and a second-order pressure p�2� or its
gradients to solve the Poisson equation for pressure. Density is
obtained from the temperature through the equation of state and
therefore no interface condition for density is required.

In the present method, we use injection for velocity components,
setting the velocity values at the interface in the low Mach number
code equal to the corresponding values interpolated from the
compressible code:

ulmx � ucx; ulmr � ucr; ulm� � uc� (15)

For the temperature, the following interface condition is employed:

�
Tlm � Tc if ulmn 
 0

Tlm
;t � ulmconvTlm

;n � 0 if ulmn > 0
(16)
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where ulmn is velocity normal to the boundary. In other words,
temperature injection is used for the part of the interface boundary
corresponding to an inflow (ulmn 
 0), and a convective outflow
condition for the temperature is used for the part of the interface
boundary corresponding to an outflow (ulmn > 0). It is necessary to
use the convective condition for the temperature at the outflow to
prevent the formation of wiggles in the temperature field, which
would form in case of injection due to an upwindlike QUICK
approximation employed for the scalar advection. Here, ulmconv is a
convection velocity defined as the maximum outflow velocity over
the boundary:

ulmconv � max
ulmn >0

ulmn (17)

According toEq. (17),ulmconv is constant over the interface boundary in
the present formulation. The regions of inflow and outflow are
located dynamically every time step by looking at ulmn .

2. Pressure

Because of the different roles played by pressure in compressible
and lowMach number equations, formulating an interface condition
for pressure requires special care. Because of different normalization
of pressure employed in the two codes, one has to refer back to
dimensional variables to derive an interface condition. Dimensional
pressure obtained by the compressible code is

p�c�x; t� � pc�x; t� 	 ��r u�2r (18)

An equivalent dimensional pressure in the low Mach number
formulation is

p�lm�x; t� � plm�x; t� 	 p�r (19)

where plm�x; t� has an asymptotic expansion

plm�x; t� � p�0�lm�t� � �M2p�2�lm�x; t� � �3�x; t� (20)

according to the low Mach number asymptotic analysis [22]. Here,
�3�x; t� represents the residual terms in the expansion,
�3�x; t� �O�M3�. In a general case, zeroth-order pressure p�0�lm�t�
is a function of time, but constant in space. It plays the role of a global
thermodynamic pressure. According to Eq. (12), the time
dependence of a zeroth-order pressure is dropped out in the present
formulation due to assumptions (11). Second-order pressure
p�2�lm�x; t�, or dynamic pressure, is decoupled from the density and
temperature. Its role is similar to the pressure in an incompressible
flow: the divergence of the momentum equation (8) yields a Poisson
equation for the second-order pressure.

Because dimensional values of pressure p�c and p�lm should be
equal at the interface, equating the right-hand sides of Eq. (18) and
Eq. (19) and taking into account that p�r � ��r u�2r =��M2�, one
obtains at the interface

�M2pc�x; t� � p�0�lm�t� � �M2p�2�lm�x; t� � �3�x; t� (21)

In the present method, the zeroth-order pressure is set equal to the
reference pressure

p��0�lm � p�r (22)

leading to the condition

p�0�lm � 1 (23)

in nondimensional variables. For the second-order pressure
p�2�lm�x; t�, interface conditions are required for solving the Poisson
equation. In the present formulation, the Poisson equation is solved
with Neumann boundary conditions. Taking spatial derivatives of
Eq. (21) and neglecting the third-order terms, the following
approximate Neumann interface conditions can be derived:

@p�2�lm�x; t�=@xn � @pc�x; t�=@xn (24)

Conditions (23) and (24) are sufficient to obtain numerical solution
of the low Mach number equations (7–10).

3. Total Value of Pressure

If one wishes to compare the values of pressure obtained by the
two codes or to use the pressure from the low Mach number code in
the formulation of interface conditions for the compressible code,
one needs to estimate the total value of pressure plm�x; t� at the
desired grid locations of the low Mach number domain. To do that,
first note that with Neumann boundary conditions, the second-order
pressurep�2�lm�x; t� can be calculated only up to an additive function
C�t�, constant in space:

p�2�lm�x; t� � ~p�2�lm�x; t� � C�t� (25)

where ~p�2�lm�x; t� is a partial solution of the Poisson equation.
Therefore, according to Eq. (20), plm�x; t� can be written as

plm�x; t� � p�0�lm�t� � �M2 ~p�2�lm�x; t� � �2�x; t� (26)

where the function �2�x; t� is defined as

�2�x; t� � �M2C�t� � �3�x; t� (27)

Note that at orderM2 the function �2�x; t� depends only on time and
not on space. To construct plm�x; t�, one needs to know �2�x; t�,
which is not part of a solution of the lowMach number equations (7–
10); �2�x; t� can be calculated in the region of overlap by using the
pressure from the compressible code to account for the missing
information. However, evaluation of �2�x; t� at every grid point in
the overlap region during each computational time step is
prohibitively expensive, because three-dimensional interpolation is
required. A simpler method for reconstructing �2�x; t� is proposed:
�2�x; t� is evaluated only at one specific location inside the overlap
region, some reference point x0. The same value of �2�x; t� is
assumed for the rest of the low Mach number domain; that is,

�2�x; t� � �2�x0; t� (28)

By neglecting spatial variation of �2 we still retain the second order of
accuracy with the Mach number, as already noted. With this
procedure for reconstructing �2, one can derive the following
expression for plm:

plm�x; t� � �M2�pc�x0; t� � ~p�2�lm�x; t� � ~p�2�lm�x0; t�� (29)

It is important not to forget to change normalization if the low Mach
number pressure is supplied to the compressible code for formulating
interface conditions:

pc � plm 	 p�r =
�
��r u

�2
r

�
� plm=��M2� (30)

C. Error With Mach Number

Because low Mach number asymptotic expansions retain the
terms up to the second order withMach number,O�M2�, the inherent
difference between the analytical solutions of the compressible and
the low Mach number equations is of that order. Therefore,
numerical solutions of the compressible and lowMach number codes
are expected to have at least the same level of discrepancy. The
preceding formulated interface conditions do not introduce any
additional error withMach number. Indeed, interface conditions (14)
and (15) are valid to O�M2� according to the difference between
compressible and low Mach number variables due to the low Mach
number asymptotic expansions. In the formulation of condition (24)
for the pressure gradient, only third-order terms are omitted;
neglecting a spatial variation of �2�x; t� in Eq. (28) does not introduce
any additional error with Mach number, because spatial variation of
�2�x; t� comes from the third-order function �3�x; t� [see Eq. (27)].
Therefore, the same order of approximation, O�M2�, is retained in
the formulation of interface conditions as in the low Mach number
asymptotics.
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D. Interpolation

To reconstruct the state information to be supplied at the interfaces
for formulating conditions (14–16) and (24), one needs to interpolate
the variables from one domain to the interface boundary nodes of
another domain. In the presentmethod, trilinear interpolation is used.
It was shown in [5] that increasing an order of interpolation does not
lead to an increase of accuracy of the coupled solution for a couple of
reasons. First, the low Mach number code is only second-order
accurate in space and a second order of interpolation is consistent
with its accuracy. Second, model error O�M2� caused by the
difference of the solutions of compressible and low Mach number
equations usually dominates the error due to interpolation, because
the latter can be controlled by grid refinement, but the former is fixed
with Mach number. Interpolation procedure used in the present
method is not conservative; that is, it does not guarantee the
conservation of mass, momentum, and energy fluxes across the
multicode interface in a discrete sense. Two different sources
contribute to the mismatch in flux values across the interface: a
mismatch in the corresponding discrete quantities (mass,
momentum, or energy) due to the difference in model equations
(compressible or low Mach number) and a mismatch due to an
interpolation and discretization causing the integral values of these
quantities over the interface to be different even if the mismatch due
to the model was absent. An overall error introduced by the lack of
conservation is therefore no larger than othermodel, interpolation, or
discretization errors.

1. Interpolation from the Low Mach Number to the Compressible Code

First consider interpolation from the low Mach number code
domain to the interface boundary of the compressible code domain.
An intersection of the interface boundary of the compressible code
with the staggered grid corresponding to the lowMach number code
is shown in Fig. 2 in two dimensions. Grid nodes of the interface
boundary, to which lowMach number values should be interpolated,
are specified as black circles. To perform interpolation, the grid cell
of the low Mach number code surrounding each interface boundary
node of the compressible code is identified at the preprocessing step.
Because of the staggering of the low Mach number variables, the
corresponding grid cells will be different for an interpolation of
different variables. For example, to interpolate u values to the third
interface boundary point from the left in Fig. 2 (third circle from the
left), the grid cell with the corners at u velocity locations is used. To
interpolate the values of v, the grid cell with v velocity in the corners
is used, etc. This way, all five variables that constitute the state
information for formulating interface conditions (14) (density,
temperature, and the three components of velocity) are obtained at
each interface boundary point of the compressible code. However,
interpolated velocities correspond to the low Mach number code
local coordinate system. For a three-dimensional case, the coordinate
system is cylindrical �x; r; �� and the corresponding interpolated
velocities are �ux; ur; u��. Transformation of these velocities into the
coordinate system associated with the compressible code �x; y; z� is
performed in two steps, which are schematically shown in Fig. 3a.
After interpolation to the nodes of the compressible interface

boundary, velocities �ux; ur; u�� are first transformed into velocities
�u1; u2; u3�, which correspond to the local Cartesian system
associatedwith the lowMachnumber code, �x1; x2; x3�, and then into
velocities u; v; w� �. The �x1; x2; x3� coordinate system is obtained by
the rotation of the system �x; y; z� counterclockwise to an angle �,
where � is the angle between the x axis of the compressible domain
and the centerline of the low Mach number domain (see Fig. 1).

2. Interpolation from the Compressible to the Low Mach Number Code

To interpolate the variables from the compressible domain to the
interface boundaries of the lowMach number domain, the procedure
is a little different. The difference comes from the different
arrangement of variableswith respect to the computational grid in the
two codes. In the compressible code, the variables are collocated, and
an interpolation of velocities from the lowMach number code to the
grid nodes of the compressible interface boundary is performed
before the transformations. In the low Mach number code, the
variables are staggered. Because of the need for the transformation of
velocities interpolated from the compressible code into the local
coordinate system associated with the low Mach number code,
�u; v; w�7!�ux; ur; u��, to reconstruct each of the variables ux, ur,
and u�, knowledge of all three components of velocity u, v, and w
would be required at each location on the staggered grid, where ux,
ur, and u� are defined. It means that an amount of interpolation
operations would be 3 times larger than in the case of interpolation
from the low Mach number to the compressible code described
earlier. To reduce the amount of interpolation, which is an expensive
procedure, especially in three dimensions, transformation
�u; v; w�7!�u1; u2; u3� is performed before interpolation at all the
grid points of the compressible domain. By doing the transformation
�u; v; w�7!�u1; u2; u3� first, we only need to interpolate one velocity
component, u1, to obtain streamwise velocity ux and two velocity
components u2 and u3 to find the values of radial ur and azimuthal u�
velocities. The schematics of the procedure is sketched in Fig. 3b.

3. Parallelism

The parallel interface for coupling the codes is written on a
message-passing interface platform. It constructs disjoint groups of
processes: one group for each code. All communications within each
group are performed using an intracommunicator. Message passing
between the different groups is accomplished with the help of an
intercommunicator. Time advancement of the two codes is
synchronized by choosing the global time step equal to the smallest
among the time steps of individual codes, as dictated by the stability
requirement:

�t�min��tc;�tlm� (31)

IV. Validation

Numerical test cases validating the coupling procedure are
presented in this section. Two groups of test cases are considered:
one-way coupled and two-way coupled. In the one-way coupling
setting, only one code obtains information from the other code. The

Fig. 2 Intersection of the compressible interface boundary with the

staggered grid of the low Mach number code.
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other code operates in a standalone mode, without feeling any
feedback. One-way coupling tests are necessary to checkwhether the
numerical solutions of the two codes are close to each other when the
Mach number is low (solutions are supposed to have a difference of
the order ofM2, according to the accuracy of the low Mach number
approximation). This check is important, because the solution in the
region of overlap in Fig. 1 is computed by both codes, and the
closeness of these solutions is necessary for the convergence of the
coupled solution. It also implies that theMach number of the physical
problem in the region of overlap should be small; that is, the region of
overlap should be placed inside the low-speed areas of the flow, such
as boundary-layers, etc. In a two-way coupling mode, both codes
exchange the state information through the interfaces. In this setting,
the stability of the coupling procedure, as well as the accuracy of the
coupled solution, can be investigated. In the present paper, both
constant- and variable-density implementation of the coupling
procedure is tested, because in some cases it is convenient to use a
low Mach number code in an incompressible regime, and many
computational codes are purely incompressible. Although the
coupling procedure was described for the variable-density regime of
the low Mach number code, its extension to the constant density, or
incompressible regime, is straightforward. A list of implemented
one-way and two-way coupling test cases for both incompressible
and variable-density regimes is given in Table 1. The results of the
test cases are described next.

A. One-Way Coupling

In the one-way coupling formulation, the low Mach number code
domain is placed inside the compressible code domain and
information is transferred from the compressible to the low Mach
number code through all the boundaries of the low Mach number
code domain. In the present setting, the compressible code domain
represents a region exterior to the upper half of the model turbine
bladewith a cylindrical leading edge, and the lowMach number code
domain is placed about eight diameters downstream of the leading
edge, as can be seen in Fig. 4. The size, vertical location, and
orientation of the lowMach number code domain depend on the test
case considered, whereas the geometry of the compressible code
domain is fixed for all the tests. Further details of geometry and
computational meshes used in the one-way coupling setting can be
found in [24]. The Mach number for the compressible code is
M � 0:05.

1. Incompressible–Compressible Regime

For coupling tests, when the low Mach number code is run in an
incompressible regime, velocity disturbance in the form of a circular
Taylor vortex [25] is superimposed on the mean flow around the
model turbine blade. For the circular Taylor vortex, only tangential
(swirl) velocity is nonzero, denoted here as u0:

u0 � Mr

16	�2t2
exp

�
�r2
4�t

�
(32)

where r is the distance from the center of the vortex. The circular
Taylor vortex is an analytical solution of unsteady viscous
incompressible equations and

M �
Z 1
0

2	ru0r dr

is an invariant of the flow. Parameters t andM of Eq. (32) are chosen
to set the initial radius of the vortex rd (distance from the vortex

center to the point of maximum velocity) so that Re�
U1rd=�1 � 330, and the initial velocity disturbance level
u0max=U1 � 1%. The vortex is initialized in the compressible code
domain upstream of the low Mach number code domain. It is
convected with themean flow and captured by the lowMach number
code as it passes through it.

Two-dimensional and three-dimensional tests are conducted. In
two dimensions, the low Mach number code domain is rectangular,
with 128 � 32 mesh points distributed uniformly. Two cases are
considered: when the x axis of the low Mach number domain is
perpendicular and inclined at 45 deg to the direction of the main
stream. For a three-dimensional configuration, the lowMach number
domain is cylindrical, with uniform mesh of 128 � 32 � 64 points
and the symmetry axis perpendicular to the main stream. In a three-
dimensional formulation, the flow is quasi-two-dimensional; that is,
there is no variation of the flow parameters in a spanwise z direction
in the coordinate system associated with the compressible code.

Typical snapshots of the vertical velocity v calculated with the two
codes are overlaid in Fig. 5 for perpendicular and inclined domains in
the two-dimensional case. Themoment when the center of the vortex
is inside the lowMach number code domain is shown. It can be seen
that the contours of the vertical velocity of the two solutions are very
close to each other. The same was observed for all other variables. In
fact, contours of vertical velocity show the largest difference. A
slight asymmetry in velocity contours in Fig. 5 is due to the mean
flow nonuniformity as it bends around the blade leading edge. The
mean flow nonuniformity, although it exists, is not very significant at
eight diameters downstreamof the leading edge,where the lowMach
number code domain is located.

The maximum difference between the flow variables obtained by
the two codes is calculated over the low Mach number code domain
as �ui �max juci � ulmi j for the velocity components and �p�
max jpc � plmj for the pressure. The difference in velocity
normalized by the maximum initial swirl velocity, �ui=u

0
max, is

plotted versus nondimensional computational time tU1=rd in Fig. 6
for both two-dimensional and three-dimensional cases. The
difference in pressure, normalized as �p=��1u02max�, is plotted in
Fig. 7. Both velocity and pressure differences are larger when the
center of the vortex is inside the low Mach number code domain,
corresponding to the computational time tU1=rd � 2 � 4. From
Figs. 6a and 7 one can see that the orientation of the low Mach
number domain exerts little influence on the maximum difference
between the solutions.

It can be noticed that the maximum difference between the
solutions is about 20%of the 1%disturbance level, which constitutes
0.2% of the freestream velocity. A maximum discrepancy of 0.2%
(0.002) is comparable with the value of M2 � 0:0025. As already
discussed, error of the order of M2 is an inherent error between the
solution of the low Mach number equations and the solution of the
compressible equations, due to the approximations made in the low
Mach number asymptotic analysis. This level of discrepancy is
expected between the numerical solutions of the two codes.

2. Variable-Density–Compressible Regime

The laminar boundary layer above the wall heated to the
temperature Tw � 2T1 is chosen as a test case for the one-way

Table 1 List of numerical tests to validate the coupling procedure

Coupling regime One-way coupling Two-way
coupling

Incompressible–compressible Taylor vortex Taylor vortex
Variable-density–
compressible

Heated boundary-
layer

Hot spot

U

Compressible code 
domain

Low Mach number 
code domain

∞

Compressible code 
domain

Low Mach number 
code domain

Fig. 4 Schematic of the computational domain for one-way coupling

tests.
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coupling, when the low Mach number code operates in a variable-
density regime. TheReynolds number isRe� �U1�=�1 � 500 (� is
99% boundary-layer thickness) and the Mach number isM� 0:05.
Numerical solutions of the compressible and the low Mach number
code are compared. Wall-normal profiles of the streamwise and
vertical velocities and the temperature taken through the point with
themaximum discrepancy between the solutions are shown in Fig. 8.
It can be seen that the agreement between the two solutions is
rather good.

B. Two-Way Coupling

For two-way coupling, the low Mach number code domain is
located at the left of the compressible code domain with a region of
overlap between them, as can be seen in Fig. 9. Information between
the compressible and the low Mach number codes is exchanged
through the interfaces corresponding to the outflow boundary of the
low Mach number code domain and the inflow boundary of the
compressible code domain. In a framework of the two-way coupling,
different interface conditions supplied from the lowMach number to
the compressible code are tested. Several methods are considered:

Method A is injection for fu; v; w; Tg and � is obtained from the
continuity equation:

uc � ulm; vc � vlm; wc �wlm

Tc � Tlm; �c � from continuity (33)

Method B is injection for f�; u; v; w; Tg:

uc � ulm; vc � vlm; wc �wlm

Tc � Tlm; �c � �lm (34)

Method C is injection for fu; v; w; Tg, � is calculated from the low
Mach number pressure through the equation of state:

uc � ulm; vc � vlm; wc �wlm

Tc � Tlm; �c � plm=Tlm (35)

The difference in normalization of pressure is taken into account in
Eq. (35) for formulating �c [refer to Eq. (4) and Eq. (30)].

Method D is a Riemann invariant formulation in which Riemann
invariants are formed from f�lm; ulm; vlm; wlm; Tlmg, and variables
f�c; uc; vc; wc; Tcg are reconstructed from those Riemann invariants
according to the procedure described, for example, in [19]

Method E is a Riemann invariant formulation, but � is calculated
from the low Mach number pressure through the equation of state
�� plm=T lm and used instead of �lm to form Riemann invariants as
in method D.

Method B, described in Sec. III, was chosen as the basic method
due to its superior performance. In the present section, the reader will
see the facts that led to this conclusion. When the lowMach number
code is run in an incompressible regime, constant density and
temperature equal to their freestream (reference) values are supplied

Fig. 5 Vertical velocity contours for the convecting Taylor vortex (two-
dimensional case).

0 2 4 6 8
0

0.04

0.08

0.12

0.16

0.2

∆ u
 i /

 u
' m

ax

Axial velocity
Radial velocity
Azimuthal velocity

0 2 4 6 8
Time,  tU  / rd

0

0.04

0.08

0.12

0.16

0.2

∆ u
i /u

' m
ax

Axial velocity
Radial velocity
Perpendicular domain
Inclined domain

∞ Time,  tU  / rd∞

a) Two-dimensional case b) Three-dimensional case 

Fig. 6 Maximum difference in velocity normalized by the maximum

initial swirl velocity, �ui=u
0
max, versus nondimensional computational

time tU1=rd for a convecting Taylor vortex.

0 2 4 6 8
Time, tU∞

∞

 / rd

0

0.04

0.08

0.12

0.16

∆ 
p

 /(
ρ

 u'
2 m

ax
)

2D, perpendicular domain
2D, inclined domain
3D

Fig. 7 Maximum difference in pressure, �p=��1u
02
max�, versus

nondimensional computational time tU1=rd for a convecting Taylor

vortex.

1996 PEET AND LELE



to the compressible domain instead of interpolated values (�lm � 1
and Tlm � 1 in nondimensional variables).

1. Incompressible–Compressible Regime

Vortical disturbance in the form of a convecting Taylor vortex
[Eq. (32)] superimposed on a uniformmean flow is considered to test
the two-way coupling procedure with an incompressible formulation
of the low Mach number code. All physical parameters of the
problem are the same as in the one-way coupling setting described
previously, except for the Mach number, which is now M� 0:15.
Computational domain for this test case is shown in Fig. 9a, where all
distances are nondimensionalized by the initial radius of Taylor
vortex rd. Themomentwhen the vortex is inside the overlap region is

shown in the figure. Two-dimensional calculations are performed
using uniform computational meshes with 128 � 128 grid points for
the low Mach number code and 96 � 144 grid points for the
compressible code.

a. Variation of Interface Conditions. Interface conditions A
through D are tested in a constant-density formulation of the low
Mach number code. To assess the performance of the interface
conditions and compare differentmethods, the levels of the dilatation
in the compressible code are considered. Because the Taylor vortex
[Eq. (32)] is a solution of incompressible equations, it is divergence-
free, and it therefore represents purely vortical disturbance to the
compressible flow. For a uniformmean flow and a small-disturbance
amplitude, as in the present case, the linearized modal analysis of
Kovásznay [26] is applicable, which shows that the vorticity mode
does not produce any dilatation in the compressible field. Therefore,
numerical values of the dilatation are expected to be small and
represent a goodmeasure of the performance of interface conditions.

Maximum dilatation in the compressible domain is plotted versus
the x coordinate of the center of the vortex xvortex as it convects
through the domain in Fig. 10 for methods A through D. One can see
right away that method A is unstable. Among methods B, C, and D,
method C (when the density is obtained from the pressure) shows the
smallest values of the dilatation for xvortex < 5, but the levels of
dilatation are the largest for xvortex > 5 and they do not come back to
zero after the exit of the disturbance. In fact, calculations with
method C lead to an instability if continued further. Between
methods B and D, dilatation levels are larger for the Riemann
invariant method (D) than for the injection method (B). Therefore,
the injection method (B), which is a simple interpolation of all five
variables f�; u; v; w; Tg from the low Mach number to the
compressible code, gives the best overall performance for the present
test case.

b. Behavior of the Coupled Solution (Using the Injection

Method). Vertical velocity profile versus x coordinate, taken along
the horizontal line passing through the center of the vortex, is plotted
in Fig. 11 for both the compressible and the lowMach number codes
in the coupled calculation with the injection method. Results of the
standalone calculations performedwith the compressible and the low
Mach number codes using the same computational meshes as in the
coupled calculation are also plotted for reference. Plots for the three
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relative positions of the vortex are shown: when the vortex enters the
compressible code domain [xvortex ��1:5 (Fig. 11a)], when it is in
the center of the overlap region [xvortex � 4:55 (Fig. 11b)], and when
it exits the lowMach number code domain [xvortex � 10:6 (Fig. 11c)].

For the first two plots (Figs. 11a and 11b), the vortex center is
located to the left from the outflow boundary of the low Mach
number code domain, and the difference between all four solutions is
very small. However, if we look at the velocity profiles when the
vortex is leaving the low Mach number code domain (Fig. 11c), we
see that the standalone low Mach number solution differs
significantly from the three others. Moreover, some oscillations are
noticeable in the lowMach number code solution for both single and
coupled calculations. These effects are clearly due to the outflow
conditions in the low Mach number code. An influence of outflow
conditions is better seen in Fig. 11d, where only the solutions of the
low Mach number code are plotted. To investigate whether the
oscillations occur because of insufficient resolution in the lowMach
number code, the number of grid points in the low Mach number
code domain was increased from 128 � 128 to 256 � 256. Both
standalone and coupled calculations were repeated on a finer grid,
with all other parameters of the problem left unchanged. The results
of the refined calculations are shown in Fig. 11d with the results of
the original calculations. Themagnitude of the oscillations is reduced
with grid refinement from 10�3 to 10�6 of freestream velocity in both
coupled and standalone settings, showing that the oscillations are
indeed controlled by the resolution. Reduction of oscillations at the
outflowwith grid refinementwas observed in other simulations using
the low Mach number code. Numerical experiments suggest the
following empirical rule for choosing the grid size �x while using
this code in practice:

�x=Ld < 0:05 (36)

whereLd is the disturbance scale. This condition usually ensures that
the oscillations in the low Mach number code due to the outflow
boundary conditions are less than 0.1% of the mean value. It is

interesting to note that in a standalone refined calculation, the
velocity profile, although smooth, deviates even further from the
correct value.Apparently, this deviation is due to the drawback of the
outflow boundary conditions used in a standalone computation with
the lowMach number code, which are convective outflow conditions
for velocities [20]. Clearly, this type of outflow condition is not
suitable for the case of outgoing organized disturbances.

2. Variable-Density–Compressible Regime

Temperature disturbance characterized by the Gaussian temper-
ature distribution

T 0 � Td exp��r2=r2d� (37)

convected by the uniform mean flow from the low Mach number to
the compressible domain is considered to test the variable-density
formulation of the coupling procedure (r is the distance from the
center of the disturbance, rd is the characteristic radius of the
disturbance, and Td > 0 is the disturbance amplitude). No pressure
disturbance is introduced so that this disturbance constitutes an
entropy mode according to the modal decomposition of Kovásznay
[26]. Temperature contours at the moment when the hot spot is in the
overlap region are shown in Fig. 9b. All distances are normalized by
the disturbance radius rd. Because the variable-density formulation
of the low Mach number code requires three-dimensionality of the
grid, a cylindrical grid of 128 � 64 � 64 points with uniform
distribution was used for the low Mach number code and a uniform
Cartesian grid with 96 � 144 � 8 points was employed for the
compressible code. The flow is taken to be quasi-two-dimensional,
with no variation of parameters in the z direction. The Mach number
for the compressible code isM� 0:15, and the Reynolds number for
both codes is Re�U1rd=�1 � 8000. With this Reynolds number,
the ratio of convective and viscous time scales is about 10�4, making
viscous effects insignificant.
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a. Variation of Interface Conditions. MethodsA through E for
supplying interface conditions to the compressible code described in
the beginning of this section are tested for a disturbance amplitude
Td � 1% with the variable-density regime of the low Mach number
code. We look again at the dilatation levels in the compressible code
to compare different interface conditions. Because disturbance
amplitude is again small, Kovásznay’s [26] theory is still applicable,
stating that the dilatation of an entropy mode is caused only by the
viscous dissipation. Because viscous effects are small in the present
problem, small values of the dilatation are again expected. Levels of
the maximum dilatation in the compressible code are shown in
Fig. 12. One can distinguish between unstable methods (Fig. 12a)
and stablemethods (Fig. 12b).MethodsA, C, and Ewere found to be
unstable. In thesemethods, density is not injected, but either obtained
from the continuity equation or calculated from the low Mach
number pressure. The same trendwas observed in the incompressible
formulation of the low Mach number code (Fig. 10). Perhaps it is
connected with the fact that the pressure in the low Mach number
code plays a different role than the pressure in the compressible code
(dynamic variable enforcing the continuity equation versus thermo-
dynamic variable coupled to density and temperature). Therefore,
calculating density from the low Mach number pressure is not a
correct procedure and leads to an unstable coupling. Two other
methods, B and D, result in a bounded value of the dilatation within
the considered execution time.

In the previous section, we found that for incompressible-
compressible coupling, the dilatation errors for injection method (B)
were smaller than formethodD,which usedRiemann invariants. The
same conclusion is reached in the present test problem (Fig. 12b). To
make a further comparison of themethods B andD,L1 andL2 errors
between numerical and analytical solutions for the temperature and
for the streamwise velocity are analyzed next for the case of variable-
density–compressible coupling.

Errors in temperature for both the low Mach number and the
compressible codes are shown in Fig. 13 and those for streamwise
velocity are shown in Fig. 14. It is seen that for the lowMach number
code, the dependence of errors on the method is very small, because
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interface conditions in the low Mach number code are not varied in
the present test problem and the influence through the feedback
mechanism is apparently small. For the compressible code, the
dependence on the method is more pronounced. Errors in
temperature are slightly larger for the method B and in streamwise
velocity for the method D. Comparison ofL1 andL2 errors does not
reveal a clear superiority of onemethod over the other. Slightly better
performance of the injection method in terms of the dilatation levels
combinedwith the simplicity of implementation resulted in choosing
the injection method as the basic method for specifying interface
conditions in the compressible code during the coupling procedure.

b. Behavior of the Coupled Solution (Using the Injection
Method). Temperature profiles obtained by the two codeswhen the
injection method is used are plotted in Fig. 15. Profiles are taken
along the horizontal line passing through the center of the
disturbance when it is in the region of overlap. The case of a larger
disturbance amplitude Td � 20% is also computed for reference.
Numerical solutions for the compressible and low Mach number
codes, as well as the analytical solution, are shown in Fig. 15.
Agreement between the two numerical solutions and the analytical
solution is very good, showing good performance of the coupling
procedure for both small- and large-disturbance amplitudes.

V. Conclusions

Stable and accurate couplingmethodology is proposed to combine
compressible and lowMach number codes into a single solver. This
development is motivated by the desire to extend computational
capability of computational fluid dynamics tools to perform
integrated simulations of large-scale multicomponent engineering
flow systems. The coupling is accomplished by the exchange of
unsteady interface conditions between the two codes on overlapping
grids. The methodology is tested by its application to steady and
unsteady laminar problems. Both constant-density (incompressible)
and variable-density regimes of the low Mach number code are
investigated. The first group of tests, performed in a framework of
one-way coupling, when only the low Mach number code obtains
information from the compressible codewithout providing feedback,

confirmed that numerical solutions of the two codes in the region of
overlap are close to each other, provided that theMach number in the
region of overlap is small. The closeness of the numerical solutions is
necessary for the convergence of the fully coupled problem. An error
on an order of M2 was recovered, consistent with the analytical
discrepancy between the solutions of the two equation sets. Two-way
coupling tests, when the mutual information exchange between the
two codes is activated, allowed comparison of several methods of
specifying interface conditions into the compressible code. Unstable
methods were identified in which the density supplied to the
compressible code is either calculated from the low Mach number
pressure or obtained from the continuity equation. The injection
method, in which all the interpolated variables are simply
transformed from one code to another, is found to be the best for its
stability, accuracy, and simplicity of implementation. Numerical
solutions of the coupled problem obtained with the injection method
are compared with the solutions of standalone calculations as well as
analytical solutions, and good agreement is observed. Further
application of the developed solver to unsteady turbulent simulations
of film-cooling flow from inclined cylindrical holes [5] confirms the
applicability of this procedure to calculations of complex
engineering problems.
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